Change search
Refine search result
1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ardekani, Mehdi Niazi
    et al.
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Costa, Pedro
    Breugem, Wim Paul
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Numerical study of the sedimentation of spheroidal particles2016In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 87, p. 16-34Article in journal (Refereed)
    Abstract [en]

    The gravity-driven motion of-rigid particles in a viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated for spherical particles. We therefore consider the sedimentation of non-spherical (spheroidal) isolated and particle pairs in a viscous fluid via numerical simulations using the Immersed Boundary Method. The simulations performed here show that the critical Galileo number for the onset of secondary motions decreases as the spheroid aspect ratio departs from 1. Above this critical threshold, oblate particles perform a zigzagging motion whereas prolate particles rotate around, the vertical axis while having their broad side facing the falling direction. Instabilities of the vortices in the wake follow when farther increasing the Galileo number. We also study the drafting kissing-tumbling associated with the settling of particle pairs. We find that the interaction time increases significantly for non-spherical particles and, more interestingly, spheroidal particles are attracted from larger lateral displacements. This has important implications for the estimation of collision kernels and can result its increasing clustering in suspensions of sedimenting spheroids.

  • 2.
    Banerjee, Indradumna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rosti, Marco Eduardo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Kumar, Tharagan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lashgari, Iman
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Russom, Aman
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Dynamics of Inertial migration of particles in straight channels2017Conference paper (Refereed)
    Abstract [en]

    SUMMARY

    We study numerically the entire migration dynamics of spherical and oblate particles in straight rectangular and square cross sectional ducts. The reported results can help in design of straight duct channel based microfluidic systems.

     

    KEYWORDS: Inertial microfluidics, Lateral migration, Oblate particles, Straight particles.

     

    INTRODUCTION

    We  simulate spherical and oblate rigid particles in straight ducts of different aspect ratios using an Immersed Boundary Method. To the best of our knowledge, this is the first time not only the equilibrium position of particles is described, but also the entire migration dynamics of the particle from the initial to final position, including particle trajectory, velocity, rotation and orientation, are investigated.

     

    EXPERIMENTAL

     The fluid is considered incompressible and its motion is governed by the Navier Stokes and Continuity equations. The numerical approach employed is an Immersed Boundary Method (IBM) with two sets of grid points: an equispaced Eulerian mesh for the fluid flow, and Lagrangian grid points uniformly distributed on the surface of the particle. The flow is set up in square and rectangular cross section ducts with no slip and no penetration boundary conditions (Fig.1).

     

    RESULTS AND DISCUSSION

    We examine the lateral motion of spherical and oblate particles using the IBM method mentioned above. While simulating three different spheres in a square duct of duct width to sphere diameter ratio H/Ds= [3.5, 5, 10], we find that the particles focus at closest face-cantered equilibrium position from their point of introduction(Fig.2a). We also show the downstream length needed for a sphere to focus, focusing length, as a function of the distance from the vertical duct symmetry line and as a function of Reynolds number(Fig.2b and c respectively). Spherical particles in rectangular duct tend to move laterally toward the longer length wall and then slowly moves towards the equilibrium position at the face-centre along the long wall(fig.3a). We also observe that the focusing length is longer for spherical particles in a rectangular duct, about three times longer than that in square duct (fig. 3b). In case of an oblate particle flowing through a square duct, the lateral motion towards the face centred equilibrium position is similar to that of a sphere (fig.4a), however there is significant tumbling motion of the particle as it tries to reach equilibrium(fig.4b).In a rectangular duct of aspect ratio 2, the oblate particle reaches a steady configuration on the duct symmetry line at the center of the different faces (fig.5a). The focusing length surprisingly is shorter in a rectangular duct for an oblate particle in contrast to its focusing length in a square duct. This is attributed to the higher lateral velocity of the oblate in the second stage of the migration, that with negligible tumbling(fig.5b). The behavior of three oblate particles in a square duct of duct width to longer diameter ratio H/Ds= [3.5, 5, 10] is different compared to a sphere as the largest oblate tend to focus at the duct cross section diagonals compared to the other two which are at face centred equilibrium as in case of a sphere(fig.6a). We attribute this to the rotation rate of the larger particle which is initially increasing and then decreasing(fig.6b).When it comes to focusing lengths, the smaller particles need longer times to reach their final equilibrium(fig.6c). Another interesting behavior we see is the effect of Reynolds number, where it can be seen that the oblate particles show a tilt of 21 degrees when focusing at equilibrium at certain high Reynolds number (fig.7).

     

    CONCLUSION

    The results presented employ a highly accurate interface-resolved numerical algorithm, based on the Immersed Boundary Method to study the entire inertial migration of an oblate particle in both square and rectangular ducts and compare it with that of a single sphere. Currently, we apply a volume penalization method and polymeric drag component to the code to solve for viscoelastic effects in circular microcapillaries.

     

    ACKNOWLEDGEMENTS

    This work was supported by the European Research Council Grant no. ERC-2013-CoG-616186, TRITOS and by the Swedish Research Council Grant no. VR 2014-5001, COST Action MP1305: Flowing matter, and computation time from SNIC.

     REFERENCES : Lashgari, Iman, et al. Journal of Fluid Mechanics 819 (2017): 540-561.

  • 3.
    Brandt, L.uca
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Ardekani, Mehdi Niazi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Picano, F.
    Costa, P.
    Breugem, W. -P
    Numerical study of turbulent channel flow laden with finite-size non-spherical particles2017In: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, International Symposium on Turbulence and Shear Flow Phenomena, TSFP10 , 2017, Vol. 4Conference paper (Refereed)
    Abstract [en]

    We present interface-resolved numerical simulations of turbulent channel flow laden with non-spherical rigid and neutrally-buoyant particles. We first focus on the case of oblate particles of aspect ratio 1/3 at volume fractions up to 15% and show that the turbulent drag is decreasing when increasing the particle volume fraction although the effective viscosity of the suspension actually increases. We relate the observed drag reduction to turbulence attenuation and to particle migration away from the near-wall region. Particles tend to align parallel to the wall with rotation rates significantly lower than those reported for spheres. In the second part of the study, we examine the effect of the particle slenderness on the observed drag reduction and show that the drag increases for flatter particles.

  • 4.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Clustering and increased settling speed of oblate particles at finite Reynolds number2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Refereed)
  • 5.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Clustering and increased settling speed of oblate particles at finite Reynolds number2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 848, p. 696-721Article in journal (Refereed)
    Abstract [en]

    We study the settling of rigid oblates in a quiescent fluid using interface-resolved direct numerical simulations. In particular, an immersed boundary method is used to account for the dispersed solid phase together with lubrication correction and collision models to account for short-range particle-particle interactions. We consider semi-dilute suspensions of oblate particles with aspect ratio AR = 1/3 and solid volume fractions (Phi = 0.5-10%. The solid-to-fluid density ratio R = 1.02 and the Galileo number (i.e. the ratio between buoyancy and viscous forces) based on the diameter of a sphere with equivalent volume Ga = 60. With this choice of parameters, an isolated oblate falls vertically with a steady wake with its broad side perpendicular to the gravity direction. At this Ga, the mean settling speed of spheres is a decreasing function of the volume Phi and is always smaller than the terminal velocity of the isolated particle, V-t. On the contrary, in dilute suspensions of oblate particles (with Phi <= 1 %), the mean settling speed is approximately 33 % larger than V-t. At higher concentrations, the mean settling speed decreases becoming smaller than the terminal velocity V-t between (Phi = 5 % and 10%. The increase of the mean settling speed is due to the formation of particle clusters that for Phi = 0.5-1 % appear as columnar-like structures. From the pair distribution function we observe that it is most probable to find particle pairs almost vertically aligned. However, the pair distribution function is non-negligible all around the reference particle indicating that there is a substantial amount of clustering at radial distances between 2 and 6c (with c the polar radius of the oblate). Above Phi = 5 %, the hindrance becomes the dominant effect, and the mean settling speed decreases below V-t. As the particle concentration increases, the mean particle orientation changes and the mean pitch angle (the angle between the particle axis of symmetry and gravity) increases from 23 degrees to 47 degrees . Finally, we increase Ga from 60 to 140 for the case with (Phi = 0.5 % and find that the mean settling speed (normalized by V-t) decreases by less than 1 % with respect to Ga = 60. However, the fluctuations of the settling speed around the mean are reduced and the probability of finding vertically aligned particle pairs increases.

  • 6.
    Izbassarov, Daulet
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Rosti, Marco E.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Sarabian, Mohammad
    Hormozi, Sarah
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes.
    Tammisola, Outi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Computational modeling of multiphase viscoelastic and elastoviscoplastic flows2018In: International Journal for Numerical Methods in Fluids, ISSN 0271-2091, E-ISSN 1097-0363, Vol. 88, no 12, p. 521-543Article in journal (Refereed)
  • 7.
    Lashgari, Iman
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Niazi Ardekani, Mehdi
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Banerjee, Indradumna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Russom, Aman
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Inertial migration of spherical and oblate particles in straight ductsIn: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Refereed)
    Abstract [en]

    We study numerically the inertial migration of a single rigid sphere and an oblate spheroid in straight square and rectangular ducts. A highly accurate interface-resolved numerical algorithm is employed to analyse the entire migration dynamics of the oblate particle and compare it with that of the sphere. Similarly to the inertial focusing of spheres, the oblate particle reaches one of the four face-centred equilibrium positions, however they are vertically aligned with the axis of symmetry in the spanwise direction. In addition, the lateral trajectories of spheres and oblates collapse into an equilibrium manifold before ending at the equilibrium positions, with the equilibrium manifold tangential to lines of constant background shear for both sphere and oblate particles. The differences between the migration of the oblate and sphere are also presented, in particular the oblate may focus on the diagonal symmetry line of the duct cross-section, close to one of the corners, if its diameter is larger than a certain threshold. Moreover, we show that the final orientation and rotation of the oblate exhibit a chaotic behaviour for Reynolds numbers beyond a critical value. Finally, we document that the lateral motion of the oblate particle is less uniform than that of the spherical particle due to its evident tumbling motion throughout the migration. In a square duct, the strong tumbling motion of the oblate in the first stage of the migration results in a lower lateral velocity and consequently longer focusing length with respect to that of the spherical particle. The opposite is true in a rectangular duct where the higher lateral velocity of the oblate in the second stage of the migration, with negligible tumbling, gives rise to shorter focusing lengths.These results can help the design of microfluidic systems for bio-applications.

  • 8.
    Lupo, Giandomenico
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Duwig, Christophe
    KTH, School of Engineering Sciences (SCI), Mechanics.
    An Immersed Boundary Method for flows withevaporating dropletsManuscript (preprint) (Other academic)
  • 9.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Numerical study of non-spherical/spherical particles in laminar and turbulent flows2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The presence of solid rigid particles alters the global transport and rheological properties of the mixture in complex (and often unpredictable) ways. In recent years a few studies have been devoted to investigating the behavior of dense suspensions in the turbulent/inertial regime with the majority of theses analyses limited to mono-disperse rigid neutrally-buoyant spheres. However, one interesting parameter that is rarely studied for particles with high inertia is the particle shape. Spheroidal particles introduce an anisotropy, e.g. a tendency to orient in a certain direction, which can affect the bulk behavior of a suspension in an unexpected ways. The main focus of this study is therefore to investigate the behavior of spheroidal particles and their effect on turbulent/inertial flows.

    We perform fully resolved simulations of particulate flows with spherical/spheroidal particles, using an efficient/accurate numerical approach that enables us to simulate thousands of particles with high resolutions in order to capture all the fluid-solid interactions.

    Several conclusions are drawn from this study that reveal the importance of particle's shape effect on the behaviour of a suspension e.g. spheroidal particles tend to cluster while sedimenting. This phenomenon is observed in this work for both particles with high inertia, sedimenting in a quiescent fluid and inertialess particles (point-like tracer prolates) settling in homogenous isotropic turbulence. The mechanisms for clustering is indeed different between these two situations, however, it is the shape of particles that governs these mechanisms, as clustering is not observed for spherical particles. Another striking finding of this work is drag reduction in particulate turbulent channel flow with rigid oblate particles. Again this drag reduction is absent for spherical particles, which instead increase the drag with respect to single-phase turbulence. 

  • 10.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Numerical study of transport phenomena in particle suspensions2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Suspensions of solid particles in a viscous liquid are of scientific and technological interest in a wide range of applications. Sediment transport in estuaries, blood flow in the human body, pyroclastic flows from volcanos and pulp fibers in papermaking are among the examples. Often, these particulate flows also include heat transfer among the two phases or the fluid might exhibit a viscoelastic behavior. Predicting these flows and the heat transfer within requires a vast knowledge of how particles are distributed across the domain, how particles affect the flow field and finally how they affect the global behavior of the suspension. The aim of this work is therefore to improve the physical understanding of these flows, including the effect of physical and mechanical properties of the particles and the domain that bounds them.To this purpose, particle-resolved direct numerical simulations (PR-DNS) of spherical/non-spherical particles in different flow regimes and geometries are performed, using an efficient/accurate numerical tool that is developed within this work. The code is based on the Immersed Boundary Method (IBM) for the fluid-solid interactions with lubrication, friction and collision models for the close range particle-particle (particle-wall) interactions, also able to resolve for heat transfer equation in both Newtonian and non-Newtonian fluids.

    Several conclusions are drawn from this study, revealing the importance of the particle's shape and inertia on the global behavior of a suspension, e.g. spheroidal particles tend to cluster while sedimenting. This phenomenon is observed here for both particles with high inertia, sedimenting in a quiescent fluid and inertialess particles (point-like tracer prolates) settling in homogeneous isotropic turbulence. The mechanisms for clustering is indeed different between these two situations, however, it is the shape of the particles that governs these mechanisms, as clustering is not observed for spherical particles. Another striking finding of this work is drag reduction in particulate turbulent channel flow with disk-like spheroidal particles. Again this drag reduction is absent for spherical particles, which instead increase the drag with respect to single-phase turbulence. In particular, we show that inertia at the particle scale induces a non-linear increase of the heat transfer as a function of the volume fraction, unlike the case at vanishing inertia where heat transfer increases linearly within the suspension.

  • 11.
    Niazi Ardekani, Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Abouali, Omid
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. School of Mechanical Engineering, Shiraz University.
    Picano, Francesco
    University of Padova, Department of Industrial Engineering.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Heat transfer in laminar Couette flow laden with rigid spherical particles2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 834, p. 308-334Article in journal (Refereed)
    Abstract [en]

    We study heat transfer in plane Couette flow laden with rigid spherical particles by means of direct numerical simulations. In the simulations we use a direct-forcing immersed boundary method to account for the dispersed phase together with a volume-of-fluid approach to solve the temperature field inside and outside the particles. We focus on the variation of the heat transfer with the particle Reynolds number, total volume fraction (number of particles) and the ratio between the particle and fluid thermal diffusivity, quantified in terms of an effective suspension diffusivity. We show that, when inertia at the particle scale is negligible, the heat transfer increases with respect to the unladen case following an empirical correlation recently proposed in the literature. In addition, an average composite diffusivity can be used to approximate the effective diffusivity of the suspension in the inertialess regime when varying the molecular diffusion in the two phases. At finite particle inertia, however, the heat transfer increase is significantly larger, smoothly saturating at higher volume fractions. By phase-ensemble-averaging we identify the different mechanisms contributing to the total heat transfer and show that the increase of the effective conductivity observed at finite inertia is due to the increase of the transport associated with fluid and particle velocity. We also show that the contribution of the heat conduction in the solid phase to the total wall-normal heat flux reduces when increasing the particle Reynolds number, so that particles of low thermal diffusivity weakly alter the total heat flux in the suspension at finite particle Reynolds numbers. On the other hand, a higher particle thermal diffusivity significantly increases the total heat transfer.

  • 12.
    Niazi Ardekani, Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Asmar, L. A.
    Picano, F.
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles2018In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 71, p. 189-199Article in journal (Refereed)
    Abstract [en]

    Controlling heat and mass transfer in particulate suspensions has many applications in fuel combustion, food industry, pollution control and life science. We perform direct numerical simulations (DNS) to study the heat transfer within a suspension of neutrally buoyant, finite-size spherical particles in laminar and turbulent pipe flows, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve the temperature equation both inside and outside the particles. Particle volume fractions up to 40% are simulated for different pipe to particle diameter ratios. We show that a considerable heat transfer enhancement (up to 330%) can be achieved in the laminar regime by adding spherical particles. The heat transfer is observed to increase significantly as the pipe to particle diameter ratio decreases for the parameter range considered here. Larger particles are found to have a greater impact on the heat transfer enhancement than on the wall-drag increase. In the turbulent regime, however, only a transient increase in the heat transfer is observed and the process decelerates in time below the values in single-phase flows as high volume fractions of particles laminarize the core region of the pipe. A heat transfer enhancement, measured with respect to the single phase flow, is only achieved at volume fractions as low as 5% in a turbulent flow.

  • 13.
    Niazi Ardekani, Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Turbulence modulation in channel flow of finite-size spheroidal particles2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 859, p. 887-901Article in journal (Refereed)
    Abstract [en]

    Finite-size particles modulate wall-bounded turbulence, leading, for the case of spherical particles, to increased drag also owing to the formation of a particle wall layer. Here, we study the effect of particle shape on the turbulence in suspensions of spheroidal particles at volume fraction phi = 10 % and show how the near-wall particle dynamics deeply changes with the particle aspect ratio and how this affects the global suspension behaviour. Direct numerical simulations are performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. The turbulence reduces with the aspect ratio of oblate particles, leading to drag reduction with respect to the single-phase flow for particles with aspect ratio AR <= 1/3, when the significant reduction in Reynolds shear stress is more than the compensation by the additional stresses, induced by the solid phase. Oblate particles are found to avoid the region close to the wall, travelling parallel to it with small angular velocities, while preferentially sampling high-speed fluid in the wall region. Prolate particles also tend to orient parallel to the wall and avoid its vicinity. Their reluctance to rotate around the spanwise axis reduces the wall-normal velocity fluctuation of the flow and therefore the turbulence Reynolds stress, similar to oblates; however, they undergo rotations in wall-parallel planes which increase the additional solid stresses due to their relatively larger angular velocities compared to the oblates. These larger additional stresses compensate for the reduction in turbulence activity and lead to a wall drag similar to that of single-phase flows. Spheres on the other hand, form a layer close to the wall with large angular velocities in the spanwise direction, which increases the turbulence activity in addition to exerting the largest solid stresses on the suspension, in comparison to the other studied shapes. Spherical particles therefore increase the wall drag with respect to the single-phase flow.

  • 14.
    Niazi Ardekani, Mehdi
    et al.
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Costa, Pedro
    Breugem, Wim Paul
    Picano, Francesco
    University of Padova, Department of Industrial Engineering.
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Drag reduction in turbulent channel flow laden with finite-size oblate spheroids2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 816, p. 43-70Article in journal (Refereed)
    Abstract [en]

    We study suspensions of oblate rigid particles in a viscous fluid for different values of the particle volume fractions.Direct numerical simulations have been performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. With respect to the single phase flow, we show that in flows laden with oblate spheroids the drag is reduced and the turbulent fluctuations attenuated.In particular, the turbulence activity decreases to lower values than those obtained by only accounting for the effective suspension viscosity.To explain the observed drag reduction we consider the particle dynamics and the interactions of the particles with the turbulent velocity field and show that the particle wall layer, previously observed and found to be responsible for the increased dissipation in suspensions of spheres, disappears in the case of oblate particles.These rotate significantly slower than spheres near the wall and tend to stay with their major axes parallel to the wall, which leads to a decrease of the Reynolds stresses and turbulence production and so to the overall drag reduction.

  • 15.
    Niazi Ardekani, Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Turbulent  flow of finite-size spherical particles with viscous hyper-elastic walls2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Other academic)
  • 16.
    Niazi Ardekani, Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco Edoardo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Turbulent flow of finite-size spherical particles in channels with viscous hyper-elastic walls2019In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 873, p. 410-440, article id PII S0022112019004130Article in journal (Refereed)
    Abstract [en]

    We study single-phase and particle-laden turbulent channel flows bounded by two incompressible hyper-elastic walls with different deformability at bulk Reynolds number $5600$ . The solid volume fraction of finite-size neutrally buoyant rigid spherical particles considered is $10\,\%$ . The elastic walls are assumed to be of a neo-Hookean material. A fully Eulerian formulation is employed to model the elastic walls together with a direct-forcing immersed boundary method for the coupling between the fluid and the particles. The data show a significant drag increase and the enhancement of the turbulence activity with growing wall elasticity for both the single-phase and particle-laden flows when compared with the single-phase flow over rigid walls. Drag reduction and turbulence attenuation is obtained, on the other hand, with highly elastic walls when comparing the particle-laden flow with the single-phase flow for the same wall properties; the opposite effect, drag increase, is observed upon adding particles to the flow over less elastic walls. This is explained by investigating the near-wall turbulence, where the strong asymmetry in the magnitude of the wall-normal velocity fluctuations (favouring positive $v<^>{\prime }$ ), is found to push the particles towards the channel centre. The particle layer close to the wall contributes to turbulence production by increasing the wall-normal velocity fluctuations, so that in the absence of this layer, smaller wall deformations and in turn turbulence attenuation is observed. For a moderate wall elasticity, we increase the particle volume fraction up to $20\,\%$ and find that particle migration away from the wall is the cause of turbulence attenuation with respect to the flow over rigid walls. However, for this higher volume fractions, the particle induced stress compensates for the decreasing Reynolds shear stress, resulting in a higher overall drag for the case with elastic walls. The effect of the wall elasticity on the overall drag reduces significantly with increasing particle volume fraction.

  • 17.
    Niazi Ardekani, Mehdi
    et al.
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Karp-Boss, Lee
    School of Marine Sciences, University of Maine.
    Bearon, Rachel
    Department of Mathematical Sciences, University of Liverpool.
    Variano, Evan
    Department of Civil and Environmental Engineering, University of California.
    Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 831, p. 655-674Article in journal (Refereed)
    Abstract [en]

    Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phytoplankton draw down $CO_2$ at magnitudes equivalent to forests and other terrestrial plants and convert it to organic material that is then consumed by other organisms of phytoplankton in higher trophic levels. Mechanisms that affect local concentrations and velocities are of primary significance to many encounter-based processes in the plankton including prey-predator interactions, fertilization and aggregate formation. We report results from simulations of sinking phytoplankton, considered as elongated spheroids, in homogenous isotropic turbulence to answer the question of whether trajectories and velocities of sinking phytoplankton are altered by turbulence. We show in particular that settling spheroids with physical characteristics similar to those of diatoms weakly cluster and preferentially sample regions of down-welling flow, corresponding to an increase of the mean settling speed with respect to the mean settling speed in quiescent fluid.  We explain how different parameters can affect the settling speed and what underlying mechanisms might be involved.  Interestingly, we observe that the increase in the aspect ratio of the prolate spheroids can affect the clustering and the average settling speed of particles by two mechanisms: first is the effect of aspect ratio on the rotation rate of the particles, which saturates faster than the second mechanism of increasing drag anisotropy.   

  • 18.
    Rosti, Marco E.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    The effect of elastic walls on suspension flow2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114Article in journal (Other academic)
  • 19.
    Rosti, Marco Edoardo
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Effect of elastic walls on suspension flow2019In: Physical Review Fluids, E-ISSN 2469-990X, Vol. 4, no 6, article id 062301Article in journal (Refereed)
    Abstract [en]

    We study suspensions of rigid particles in a plane Couette flow with deformable elastic walls. We find that, in the limit of vanishing inertia, the elastic walls induce shear thinning of the suspension flow such that the effective viscosity decreases as the wall deformability increases. This shear-thinning behavior originates from the interactions between rigid particles, soft walls, and carrier fluids; an asymmetric wall deformation induces a net lift force acting on the particles which therefore migrate towards the bulk of the channel. Based on our observations, we provide a closure for the suspension viscosity which can be used to model the rheology of suspensions with arbitrary volume fraction in elastic channels.

  • 20.
    Shahmardi, Armin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Zade, Sagar
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Poole, Rob J.
    Lundell, Fredrik
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Turbulent duct flow with polymers2019In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 859, p. 1057-1083Article in journal (Refereed)
    Abstract [en]

    We have performed direct numerical simulation of the turbulent flow of a polymer solution in a square duct, with the FENE-P model used to simulate the presence of polymers. First, a simulation at a fixed moderate Reynolds number is performed and its results compared with those of a Newtonian fluid to understand the mechanism of drag reduction and how the secondary motion, typical of the turbulent flow in non-axisymmetric ducts, is affected by polymer additives. Our study shows that the Prandtl's secondary flow is modified by the polymers: the circulation of the streamwise main vortices increases and the location of the maximum vorticity moves towards the centre of the duct. In-plane fluctuations are reduced while the streamwise ones are enhanced in the centre of the duct and dumped in the corners due to a substantial modification of the quasi-streamwise vortices and the associated near-wall low- and high-speed streaks; these grow in size and depart from the walls, their streamwise coherence increasing. Finally, we investigated the effect of the parameters defining the viscoelastic behaviour of the flow and found that the Weissenberg number strongly influences the flow, with the cross-stream vortical structures growing in size and the in-plane velocity fluctuations reducing for increasing flow elasticity.We have performed direct numerical simulation of the turbulent flow of a polymer solution in a square duct, with the FENE-P model used to simulate the presence of polymers. First, a simulation at a fixed moderate Reynolds number is performed and its results compared with those of a Newtonian fluid to understand the mechanism of drag reduction and how the secondary motion, typical of the turbulent flow in non-axisymmetric ducts, is affected by polymer additives. Our study shows that the Prandtl's secondary flow is modified by the polymers: the circulation of the streamwise main vortices increases and the location of the maximum vorticity moves towards the centre of the duct. In-plane fluctuations are reduced while the streamwise ones are enhanced in the centre of the duct and dumped in the corners due to a substantial modification of the quasi-streamwise vortices and the associated near-wall low- and high-speed streaks; these grow in size and depart from the walls, their streamwise coherence increasing. Finally, we investigated the effect of the parameters defining the viscoelastic behaviour of the flow and found that the Weissenberg number strongly influences the flow, with the cross-stream vortical structures growing in size and the in-plane velocity fluctuations reducing for increasing flow elasticity.

1 - 20 of 20
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf