Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Guevara, Monica
    et al.
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Jarmander, Johan
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Perez-Zabaleta, Mariel
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Quillaguaman, Jorge
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Production of 3-hydroxybutyrate by E. coli: Application of Nitrogen and Phosphorous limitation to steer fluxes to product formation2014Ingår i: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 31, s. S148-S148Artikel i tidskrift (Övrigt vetenskapligt)
  • 2.
    Guevara-Martínez, Mónica
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi. Faculty of Science and Technology, Center of Biotechnology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
    Perez-Zabaleta, Mariel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi. Faculty of Science and Technology, Center of Biotechnology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
    Gustavsson, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi.
    Quillaguamán, Jorge
    Faculty of Science and Technology, Center of Biotechnology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
    Larsson, Gen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi.
    van Maris, Antonius J. A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi.
    The role of the acyl-CoA thioesterase YciA in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli2019Ingår i: Applied Microbiology and Biotechnology, s. 1-12Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.

  • 3.
    Guevara-Martínez, Mónica
    et al.
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi. Univ Mayor de San Simon, Fac Sci & Technol, Ctr Biotechnol.
    Sjöberg Gällnö, Karin
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Sjöberg, Gustav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Jarmander, Johan
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Perez-Zabaleta, Mariel
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi. Univ Mayor de San Simon, Fac Sci & Technol, Ctr Biotechnol.
    Quillaguamán, Jorge
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation2015Ingår i: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 6, artikel-id 844Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g., in medical applications for skin grafting and as components in pharmaceuticals. In this paper we investigate cultivation strategies for production of 3HB in the previously described E. coil strain AF1000 pJBGT3RX. This strain produces extracellular 3HB by expression of two genes from the PHB pathway of Halomonas boliviensis. H. boliviensis is a newly isolated halophile that forms PHB as a storage compound during carbon excess and simultaneous limitation of another nutrient like nitrogen and phosphorous. We hypothesize that a similar approach can be used to control the flux from acetylCoA to 3HB also in E coli; decreasing the flux to biomass and favoring the pathway to the product. We employed ammonium- or phosphate-limited fed-batch processes for comparison of the productivity at different nutrient limitation or starvation conditions. The feed rate was shown to affect the rate of glucose consumption, respiration, 3HB, and acetic acid production, although the proportions between them were more difficult to affect. The highest 3HB volumetric productivity, 1.5 g L-1 h(-1), was seen for phosphate-limitation.

  • 4.
    Jarmander, Johan
    et al.
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Belotserkovsky, Jaroslav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Sjöberg, Gustav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Guevara-Martínez, Mónica
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi. Universidad Mayor de San Simón, Bolivia .
    Zabaleta, Mariel Perez
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi. Universidad Mayor de San Simón, Bolivia .
    Quillaguaman, Jorge
    Universidad Mayor de San Simón, Bolivia .
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli2015Ingår i: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 14, nr 1, s. 51-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background

    Lignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40 % of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose.

    Results

    The Halomonas boliviensis genes for 3HB production were for the first time cloned into E. coli PPA652ara leading to product secretion directly into the medium. Process design was based on comparisons of batch, fed-batch and continuous cultivation, where both excess and limitation of the carbon mixture was studied. Carbon limitation resulted in low specific productivity of 3HB (< 2 mg g-1 h-1) compared to carbon excess (25 mg g-1 h-1), but the yield of 3HB/cell dry weight (Y3HB/CDW) was very low (0.06 g g-1)during excess. Nitrogen-exhausted conditions could be used to sustain a high specific productivity (31 mg g-1 h-1) and to increase the yield of 3HB/cell dry weight to 1.38 g g-1. Nitrogen-limited fed-batch process design lead to further increased specific productivity (38 mg g-1 h-1) but also to additional cell growth (Y3HB/CDW = 0.16 g g-1). Strain PPA652ara did under all processing conditions simultaneously consume glucose, xylose and arabinose, which was not the case for a reference wild type E. coli, which also gave a higher carbon flux to acetic acid.

    Conclusions

    It was demonstrated that by using the strain E. coli PPA652ara it was possible to design a production process for 3HB from a mixture of glucose, xylose and arabinose where all sugars were consumed. An industrial 3HB production process is proposed to be divided into a growth and a production phase, and nitrogen depletion/limitation is a potential strategy to maximize the yield of 3HB/CDW in the latter. The specific productivity of 3HB by E. coli reported here from glucose, xylose and arabinose is further comparable to the current state of the art for production of 3HB from glucose sources.

  • 5.
    Jarmander, Johan
    et al.
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Guevara, Mónica
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Zabaleta, Mariel Perez
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Sjöberg, Gustav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Belotserkovsky, Jaroslav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Quillaguaman, Jorge
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Production of 3-hydroxybutyrate from waste biomass by metabolically engineered Escherichia coli2014Ingår i: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 31, s. S94-S95Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Perez-Zabaleta, Mariel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Metabolic engineering and cultivation strategies for recombinant production of (R)-3-hydroxybutyrate2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Metabolic engineering and process engineering are two powerful disciplines to design and improve microbial processes for sustainable production of an extensive number of compounds ranging from chemicals to pharmaceuticals. The aim of this thesis was to synergistically combine these two disciplines to improve the production of a model chemical called (R)-3-hydroxybutyrate (3HB), which is a medium-value product with a stereocenter and two functional groups. These features make 3HB an interesting building block, especially for the pharmaceutical industry. Recombinant production of 3HB was achieved by expression of two enzymes from Halomonas boliviensis in the model microorganism Escherichia coli, which is a microbial cell factory with proven track record and abundant knowledge on its genome, metabolism and physiology.

    Investigations on cultivation strategies demonstrated that nitrogen-depleted conditions had the biggest impact on 3HB yields, while nitrogen-limited cultivations predominantly increased 3HB titers and volumetric productivities. To further increase 3HB production, metabolic engineering strategies were investigated to decrease byproduct formation, enhance NADPH availability and improve the overall 3HB-pathway activity. Overexpression of glucose-6-phosphate dehydrogenase (zwf) increased cofactor availability and together with the overexpression of acyl-CoA thioesterase YciA resulted in a 2.7-fold increase of the final 3HB concentration, 52% of the theoretical product yield and a high specific productivity (0.27 g g-1 h-1). In a parallel strategy, metabolic engineering and process design resulted in an E. coli BL21 strain with the hitherto highest reported volumetric 3HB productivity (1.52 g L-1 h-1) and concentration (16.3 g L-1) using recombinant production. The concepts developed in this thesis can be applied to industrial 3HB production processes, but also advance the knowledge base to benefit design and expansion of the product range of biorefineries.

  • 7.
    Perez-Zabaleta, Mariel
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    (R)-3-Hydroxybutyrate production in a metabolically engineered Escherichia coli2016Ingår i: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 33, s. S117-S117Artikel i tidskrift (Refereegranskat)
  • 8.
    Perez-Zabaleta, Mariel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Guevara-Martínez, Mónica
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Gustavsson, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Quillaguamán, Jorge
    Larsson, Gen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    van Maris, Antonius J. A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation2019Ingår i: Applied Microbiology and Biotechnology, ISSN 0175-7598, E-ISSN 1432-0614, Vol. 103, nr 14, s. 5627-5636Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by E. coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) Deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB) and/or the isocitrate-lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110 and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate forming background. Despite low 3HB titers in low-cell density screening, 3HB-producing BL21 produced 5 times less acetic acid per mol of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.

  • 9.
    Perez-Zabaleta, Mariel
    et al.
    KTH, Skolan för bioteknologi (BIO).
    Jarmander, Johan
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Guevara, Monica
    KTH, Skolan för bioteknologi (BIO).
    Quillaguaman, Jorge
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Design and flux modelling for recombinant production of 3-Hydroxybutyrate in Escherichia coli2014Ingår i: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 31, s. S167-S167Artikel i tidskrift (Övrigt vetenskapligt)
  • 10.
    Perez-Zabaleta, Mariel
    et al.
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Sjöberg, Gustav
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Guevara-Martínez, Mónica
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi. Universidad Mayor de San Simón, Bolivia.
    Jarmander, Johan
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Gustavsson, Martin
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Quillaguamán, Jorge
    Larsson, Gen
    KTH, Skolan för bioteknologi (BIO), Industriell bioteknologi.
    Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply2016Ingår i: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 15, nr 1, artikel-id 91Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. Results: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V-max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q(3HB) = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y-3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L-1, which was 50 % higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L-1 and a productivity of 0.42 g L-1 h(-1), which is comparable to maximum values found in recombinant E. coli. Conclusions: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf