Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Barbe, Laurent
    et al.
    KTH, School of Biotechnology (BIO).
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics.
    Stenius, Anna
    KTH, School of Biotechnology (BIO).
    Lewin, Erland
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Asplund, Anna
    Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University.
    Pontén, Fredrik
    Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO), Proteomics.
    Toward a confocal subcellular atlas of the human proteome2008In: Molecular and cellular proteomics, ISSN 1535-9476, Vol. 7, no 3, p. 499-508Article in journal (Refereed)
    Abstract [en]

    Information on protein localization on the subcellular level is important to map and characterize the proteome and to better understand cellular functions of proteins. Here we report on a pilot study of 466 proteins in three human cell lines aimed to allow large scale confocal microscopy analysis using protein-specific antibodies. Approximately 3000 high resolution images were generated, and more than 80% of the analyzed proteins could be classified in one or multiple subcellular compartment(s). The localizations of the proteins showed, in many cases, good agreement with the Gene Ontology localization prediction model. This is the first large scale antibody-based study to localize proteins into subcellular compartments using antibodies and confocal microscopy. The results suggest that this approach might be a valuable tool in conjunction with predictive models for protein localization.

  • 2.
    Berglund, Lisa
    et al.
    KTH, School of Biotechnology (BIO).
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Gry, Marcus
    KTH, School of Biotechnology (BIO).
    Asplund, Anna
    Uppsala Univ, Rudbeck laboratory.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Persson, Anja
    KTH, School of Biotechnology (BIO).
    Ottoson, Jenny
    KTH, School of Biotechnology (BIO).
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO).
    Nilsson, Peter
    KTH, School of Biotechnology (BIO).
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Wester, Kenneth
    Uppsala Univ, Rudbeck laboratory.
    Kampf, Caroline
    Uppsala Univ, Rudbeck laboratory.
    Hober, Sophia
    KTH, School of Biotechnology (BIO).
    Pontén, Fredrik
    Uppsala Univ, Rudbeck laboratory.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    Generation of validated antibodies towards the human proteomeArticle in journal (Other academic)
    Abstract [en]

    Here we show the results from a large effort to generate antibodies towards the human proteome. A high-throughput strategy was developed based on cloning and expression of antigens as recombitant protein epitope signature tags (PrESTs) Affinity purified polyclonal antibodies were generated, followed by validation by protein microarrays, Western blotting and microarray-based immunohistochemistry. PrESTs were selected based on sequence uniqueness relative the proteome and a bioinformatics analysis showed that unique antigens can be found for at least 85% of the proteome using this general strategy. The success rate from antigen selection to validated antibodies was 31%, and from protein to antibody 55%. Interestingly, membrane-bound and soluble proteins performed equally and PrEST lengths between 75 and 125 amino acids were found to give the highest yield of validated antibodies. Multiple antigens were selected for many genes and the results suggest that specific antibodies can be systematically generated to most human proteibs.

  • 3.
    Berglund, Lisa
    et al.
    KTH, School of Biotechnology (BIO).
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO).
    Rockberg, Johan
    KTH, School of Biotechnology (BIO).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO).
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation2008In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 8, no 14, p. 2832-2839Article in journal (Refereed)
    Abstract [en]

    Here, we present an antigen selection strategy based on a whole-genome bioinformatics approach, which is facilitated by an interactive visualization tool displaying protein features from both public resources and in-house generated data. The web-based bioinformatics platform has been designed for selection of multiple, non-overlapping recombinant protein epitope signature tags by display of predicted information relevant for antigens, including domain- and epitope sized sequence similarities to other proteins, transmembrane regions and signal peptides. The visualization tool also displays shared and exclusive protein regions for genes with multiple splice variants. A genome-wide analysis demonstrates that antigens for approximately 80% of the human protein-coding genes can be selected with this strategy.

  • 4.
    Berglund, Lisa
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO), Proteomics.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    et al.,
    A genecentric human protein atlas for expression profiles based on antibodies2008In: Molecular & Cellular Proteomics, ISSN 1535-9476, Vol. 7, no 10, p. 2019-2027Article in journal (Refereed)
    Abstract [en]

    An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to similar to 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.

  • 5.
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Databases for antibody-based proteomics2008Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Humans are believed to have ~20,500 protein-coding genes andmuch effort has over the last years been put into the characterizationand localization of the encoded proteins in order to understand theirfunctions. One such effort is the Human Proteome Resource (HPR)project, started in Sweden 2003 with the aim to generate specificantibodies to each human protein and to use those antibodies toanalyze the human proteome by screening human tissues and cells.The work reported in this thesis deals with structuring of data fromantibody-based proteomics assays, with focus on the importance ofaggregating and presenting data in a way that is easy to apprehend.The goals were to model and build databases for collecting, searchingand analyzing data coming out of the large-scale HPR project and tomake all collected data publicly available. A public website, theHuman Protein Atlas, was developed giving all end-users in thescientific community access to the HPR database with proteinexpression data. In 2008, the Human Protein Atlas was released in its4th version containing more than 6000 antibodies, covering more than25% of the human proteins. All the collected protein expression datais searchable on the public website. End-users can query for proteinsthat show high expression in one tissue and no expression in anotherand possibly find tissue specific biomarkers. Queries can also beconstructed to find proteins with different expression levels in normalvs. cancer tissues. The proteins found by such a query could identifypotential biomarkers for cancer that could be used as diagnosticmarkers and maybe even be involved in cancer therapy in the future.Validation of antibodies is important in order to get reliable resultsfrom different assays. It has been noted that some antibodies arereliable in certain assays but not in others and therefore anotherpublicly available database, the Antibodypedia, has been createdwhere any antibody producer can submit their binders together withthe validation data in order for end users to purchase the bestantibody for their protein target and their intended assay.

  • 6.
    Björling, Erik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Lindskog, Cecilia
    Uppsala Univ, Rudbeck Lab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics.
    Linné, Jerker
    Uppsala Univ, Rudbeck Lab.
    Kampf, Caroline
    Uppsala Univ, Rudbeck Lab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    Pontén, Fredrik
    Uppsala Univ, Rudbeck Lab.
    A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues2008In: Molecular & Cellular Proteomics, ISSN 1535-9476, Vol. 7, no 5, p. 825-844Article in journal (Refereed)
    Abstract [en]

    Here we report the development of a publicly available Web-based analysis tool for exploring proteins expressed in a tissue- or cancer-specific manner. The search queries are based on the human tissue profiles in normal and cancer cells in the Human Protein Atlas portal and rely on the individual annotation performed by pathologists of images representing immunohistochemically stained tissue sections. Approximately 1.8 million images representing more than 3000 antibodies directed toward human proteins were used in the study. The search tool allows for the systematic exploration of the protein atlas to discover potential protein biomarkers. Such biomarkers include tissue-specific markers, cell type-specific markers, tumor type-specific markers, markers of malignancy, and prognostic or predictive markers of cancers. Here we show examples of database queries to generate sets of candidate biomarker proteins for several of these different categories. Expression profiles of candidate proteins can then subsequently be validated by examination of the underlying high resolution images. The present study shows examples of search strategies revealing several potential protein biomarkers, including proteins specifically expressed in normal cells and in cancer cells from specified tumor types. The lists of candidate proteins can be used as a starting point for further validation in larger patient cohorts using both immunological approaches and technologies utilizing more classical proteomics tools.

  • 7.
    Björling, Erik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Antibodypedia: a portal for sharing antibody and antigen validation data2008In: Molecular & Cellular Proteomics, ISSN 1535-9476, Vol. 7, no 10, p. 2028-2037Article in journal (Refereed)
    Abstract [en]

    Antibodies are useful tools to characterize the components of the human proteome and to validate potential protein biomarkers discovered through various clinical proteomics efforts. The lack of validation results across various applications for most antibodies often makes it necessary to perform cumbersome investigations to ensure specificity of a particular antibody in a certain application. A need therefore exists for a standardized system for sharing validation data about publicly available antibodies and to allow antibody providers as well as users to contribute and edit experimental evidence data, including data also on the antigen. Here we describe a new publicly available portal called Antibodypedia, which has been developed to allow sharing of information regarding validation of antibodies in which providers can submit their own validation results and reliability scores. We report standardized validation criteria and submission rules for applications such as Western blots, protein arrays, immunohistochemistry, and immunofluorescence. The contributor is expected to provide experimental evidence and a validation score for each antibody, and the users can subsequently provide feedback and comments on the use of the antibody. The database thus provides a virtual resource of publicly available antibodies toward human proteins with accompanying experimental evidence supporting an individual validation score for each antibody in an application-specific manner.

  • 8. Gloriam, David E.
    et al.
    Orchard, Sandra
    Bertinetti, Daniela
    Björling, Erik
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Bongcam-Rudloff, Erik
    Borrebaeck, Carl A. K.
    Bourbeillon, Julie
    Bradbury, Andrew R. M.
    de Daruvar, Antoine
    Duebel, Stefan
    Frank, Ronald
    Gibson, Toby J.
    Gold, Larry
    Haslam, Niall
    Herberg, Friedrich W.
    Hiltke, Tara
    Hoheisel, Joerg D.
    Kerrien, Samuel
    Koegl, Manfred
    Konthur, Zoltan
    Korn, Bernhard
    Landegren, Ulf
    Montecchi-Palazzi, Luisa
    Palcy, Sandrine
    Rodriguez, Henry
    Schweinsberg, Sonja
    Sievert, Volker
    Stoevesandt, Oda
    Taussig, Michael J.
    Ueffing, Marius
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    van der Maarel, Silvere
    Wingren, Christer
    Woollard, Peter
    Sherman, David J.
    Hermjakob, Henning
    A Community Standard Format for the Representation of Protein Affinity Reagents2010In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 9, no 1, p. 1-10Article in journal (Refereed)
    Abstract [en]

    Protein affinity reagents (PARs), most commonly antibodies, are essential reagents for protein characterization in basic research, biotechnology, and diagnostics as well as the fastest growing class of therapeutics. Large numbers of PARs are available commercially; however, their quality is often uncertain. In addition, currently available PARs cover only a fraction of the human proteome, and their cost is prohibitive for proteome scale applications. This situation has triggered several initiatives involving large scale generation and validation of antibodies, for example the Swedish Human Protein Atlas and the German Antibody Factory. Antibodies targeting specific subproteomes are being pursued by members of Human Proteome Organisation (plasma and liver proteome projects) and the United States National Cancer Institute (cancer-associated antigens). ProteomeBinders, a European consortium, aims to set up a resource of consistently quality-controlled protein-binding reagents for the whole human proteome. An ultimate PAR database resource would allow consumers to visit one online warehouse and find all available affinity reagents from different providers together with documentation that facilitates easy comparison of their cost and quality. However, in contrast to, for example, nucleotide databases among which data are synchronized between the major data providers, current PAR producers, quality control centers, and commercial companies all use incompatible formats, hindering data exchange. Here we propose Proteomics Standards Initiative (PSI)-PAR as a global community standard format for the representation and exchange of protein affinity reagent data. The PSI-PAR format is maintained by the Human Proteome Organisation PSI and was developed within the context of ProteomeBinders by building on a mature proteomics standard format, PSI-molecular interaction, which is a widely accepted and established community standard for molecular interaction data. Further information and documentation are available on the PSI-PAR web site. Molecular & Cellular Proteomics 9: 1-10, 2010.

  • 9. Mulder, J.
    et al.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics.
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Hokfelt, T.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Tissue Profiling of the Mammalian Central Nervous System Using Human Antibody-based Proteomics2009In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 8, no 7, p. 1612-1622Article in journal (Refereed)
    Abstract [en]

    A need exists for mapping the protein profiles in the human brain both during normal and disease conditions. Here we studied 800 antibodies generated toward human proteins as part of a Human Protein Atlas program and investigated their suitability for detailed analysis of various levels of a rat brain using immuno-based methods. In this way, the parallel, rather limited analysis of the human brain, restricted to four brain areas (cerebellum, cerebral cortex, hippocampus, and lateral subventricular zone), could be extended in the rat model to 25 selected areas of the brain. Approximately 100 antibodies (12%) revealed a distinct staining pattern and passed validation of specificity using Western blot analysis. These antibodies were applied to coronal sections of the rat brain at 0.7-mm intervals covering the entire brain. We have now produced detailed protein distribution profiles for these antibodies and acquired over 640 images that form the basis of a publicly available portal of an antibody-based Rodent Brain Protein Atlas database (www.proteinatlas.org/rodentbrain). Because of the systematic selection of target genes, the majority of antibodies included in this database are generated against proteins that have not been studied in the brain before. Furthermore optimized tissue processing and colchicine treatment allow a high quality, more extended annotation and detailed analysis of subcellular distributions and protein dynamics. Molecular & Cellular Proteomics 8: 1612-1622, 2009.

  • 10.
    Nilsson, Peter
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Larsson, Karin
    KTH, School of Biotechnology (BIO).
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Ottoson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Ödling, Jenny
    KTH, School of Biotechnology (BIO).
    Sundberg, Mårten
    KTH, School of Biotechnology (BIO), Proteomics.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO), Proteomics.
    Paavilainen, Linda
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Andersson, Ann-Catrin
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Kampf, Caroline
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Wester, Kenneth
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Pontén, Fredrik
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
    Towards a human proteome atlas: High-throughput generation of mono-specific antibodies for tissue profiling2005In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 5, p. 4327-4337Article in journal (Refereed)
    Abstract [en]

    A great need exists for the systematic generation of specific antibodies to explore the human proteome. Here, we show that antibodies specific to human proteins can be generated in a high-throughput manner involving stringent affinity purification using recombinant protein epitope signature tags (PrESTs) as immunogens and affinity-ligands. The specificity of the generated affinity reagents, here called mono-specific antibodies (msAb), were validated with a novel protein microarray assay. The success rate for 464 antibodies generated towards human proteins was more than 90% as judged by the protein array assay. The antibodies were used for parallel profiling of patient biopsies using tissue microarrays generated from 48 human tissues. Comparative analysis with well-characterized monoclonal antibodies showed identical or similar specificity and expression patterns. The results suggest that a comprehensive atlas containing extensive protein expression and subcellular localization data of the human proteome can be generated in an efficient manner with mono-specific antibodies.

  • 11. Ponten, Fredrik
    et al.
    Gry, Marcus
    KTH, School of Biotechnology (BIO), Proteomics.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics.
    Asplund, Anna
    Berglund, Lisa
    KTH, School of Biotechnology (BIO), Proteomics.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Kampf, Caroline
    Navani, Sanjay
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Wester, Kenneth
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    A global view of protein expression in human cells, tissues, and organs2009In: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 5Article in journal (Refereed)
    Abstract [en]

    Defining the protein profiles of tissues and organs is critical to understanding the unique characteristics of the various cell types in the human body. In this study, we report on an anatomically comprehensive analysis of 4842 protein profiles in 48 human tissues and 45 human cell lines. A detailed analysis of over 2 million manually annotated, high-resolution, immunohistochemistry- based images showed a high fraction (>65%) of expressed proteins in most cells and tissues, with very few proteins (<2%) detected in any single cell type. Similarly, confocal microscopy in three human cell lines detected expression of more than 70% of the analyzed proteins. Despite this ubiquitous expression, hierarchical clustering analysis, based on global protein expression patterns, shows that the analyzed cells can be still subdivided into groups according to the current concepts of histology and cellular differentiation. This study suggests that tissue specificity is achieved by precise regulation of protein levels in space and time, and that different tissues in the body acquire their unique characteristics by controlling not which proteins are expressed but how much of each is produced. Molecular Systems Biology 5: 337; published online 22 December 2009; doi:10.1038/msb.2009.93

  • 12.
    Pontén, Fredrik
    et al.
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University.
    Gry, Marcus
    KTH, School of Biotechnology (BIO), Proteomics.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics.
    Berglund, Lisa
    KTH, School of Biotechnology (BIO), Proteomics.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO), Proteomics.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics.
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO), Proteomics.
    Asplund, Anna
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Kampf, Caroline
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University.
    Nilsson, Kenneth
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Wester, Kenneth
    Department of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Ubiquitous protein expression in human cells, tissues and organsManuscript (Other academic)
  • 13.
    Uhlén, Mathias
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Agaton, Charlotta
    KTH, School of Biotechnology (BIO).
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Amini, Bahram
    KTH, School of Biotechnology (BIO).
    Andersen, Elisabet
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Andersson, Ann-Catrin
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Angelidou, Pia
    KTH, School of Biotechnology (BIO).
    Asplund, Anna
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Asplund, Caroline
    KTH, School of Biotechnology (BIO).
    Berglund, Lisa
    KTH, School of Biotechnology (BIO).
    Bergström, Kristina
    KTH, School of Biotechnology (BIO).
    Brumer, Harry
    KTH, School of Biotechnology (BIO).
    Cerjan, Dijana
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Ekström, Marica
    KTH, School of Biotechnology (BIO).
    Elobeid, Adila
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Eriksson, Cecilia
    KTH, School of Biotechnology (BIO).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO).
    Falk, Ronny
    KTH, School of Biotechnology (BIO).
    Fall, Jenny
    KTH, School of Biotechnology (BIO).
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO).
    Gry Björklund, Marcus
    KTH, School of Biotechnology (BIO).
    Gumbel, Kristoffer
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Halimi, Asif
    KTH, School of Biotechnology (BIO).
    Hallin, Inga
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Hamsten, Carl
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Hansson, Marianne
    KTH, School of Biotechnology (BIO).
    Hedhammar, My
    KTH, School of Biotechnology (BIO).
    Hercules, Görel
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Kampf, Caroline
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Larsson, Karin
    KTH, School of Biotechnology (BIO).
    Lindskog, Mats
    KTH, School of Biotechnology (BIO).
    Lodewyckx, Wald
    KTH, School of Biotechnology (BIO).
    Lund, Jan
    KTH, School of Biotechnology (BIO).
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO).
    Magnusson, Kristina
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Malm, Erik
    KTH, School of Biotechnology (BIO).
    Nilsson, Peter
    KTH, School of Biotechnology (BIO).
    Ödling, Jenny
    KTH, School of Biotechnology (BIO).
    Oksvold, Per
    KTH, School of Biotechnology (BIO).
    Olsson, Ingmarie
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Öster, Emma
    KTH, School of Biotechnology (BIO).
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO).
    Paavilainen, Linda
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Rimini, Rebecca
    KTH, School of Biotechnology (BIO).
    Rockberg, Johan
    KTH, School of Biotechnology (BIO).
    Runeson, Marcus
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Sköllermo, Anna
    KTH, School of Biotechnology (BIO).
    Steen, Johanna
    KTH, School of Biotechnology (BIO).
    Stenvall, Maria
    KTH, School of Biotechnology (BIO).
    Sterky, Fredrik
    KTH, School of Biotechnology (BIO).
    Strömberg, Sara
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sundberg, Mårten
    KTH, School of Biotechnology (BIO).
    Tegel, Hanna
    KTH, School of Biotechnology (BIO).
    Tourle, Samuel
    KTH, School of Biotechnology (BIO).
    Wahlund, Eva
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Waldén, Annelie
    KTH, School of Biotechnology (BIO).
    Wan, Jinghong
    KTH, School of Biotechnology (BIO), Molecular Biotechnology (closed 20130101).
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Westberg, Joakim
    KTH, School of Biotechnology (BIO).
    Wester, Kenneth
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Wrethagen, Ulla
    KTH, School of Biotechnology (BIO).
    Xu, Lan Lan
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Pontén, Fredrik
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    A human protein atlas for normal and cancer tissues based on antibody proteomics2005In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 4, no 12, p. 1920-1932Article in journal (Refereed)
    Abstract [en]

    Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, similar to 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.

  • 14.
    Älgenäs, Cajsa
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Agaton, Charlotta
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    Björling, Lisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Kampf, Caroline
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Wester, Kenneth
    Pontén, Fredrik
    Wernerus, Henrik
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Antibody performance in western blot applications is context- dependent2014In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 9, no 3, p. 435-445Article in journal (Refereed)
    Abstract [en]

    An important concern for the use of antibodies in various applications, such as western blot (WB) or immunohistochemistry (IHC), is specificity. This calls for systematic validations using well-designed conditions. Here, we have analyzed 13000 antibodies using western blot with lysates from human cell lines, tissues, and plasma. Standardized stratification showed that 45% of the antibodies yielded supportive staining, and the rest either no staining (12%) or protein bands of wrong size (43%). A comparative study of WB and IHC showed that the performance of antibodies is application-specific, although a correlation between no WB staining and weak IHC staining could be seen. To investigate the influence of protein abundance on the apparent specificity of the antibody, new WB analyses were performed for 1369 genes that gave unsupportive WBs in the initial screening using cell lysates with overexpressed full-length proteins. Then, more than 82% of the antibodies yielded a specific band corresponding to the full-length protein. Hence, the vast majority of the antibodies (90%) used in this study specifically recognize the target protein when present at sufficiently high levels. This demonstrates the context- and application-dependence of antibody validation and emphasizes that caution is needed when annotating binding reagents as specific or cross-reactive. WB is one of the most commonly used methods for validation of antibodies. Our data implicate that solely using one platform for antibody validation might give misleading information and therefore at least one additional method should be used to verify the achieved data.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf