Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Jun
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Zhang, Xiaolei
    Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
    Pawlak-Kruczek, Halina
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kruczek, P.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant2014In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 84, p. 503-511Article in journal (Refereed)
    Abstract [en]

    Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO2 and CO account for 69-91% and 4-27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources.

  • 2.
    Li, Jun
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Zhang, Xiaolei
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Effects of Flue Gas Internal Recirculation on NOx and SOx Emissions in a Co-Firing Boiler2013In: International Journal of Clean Coal and Energy, ISSN 2168-1538, Vol. 2, no 2, p. 13-21Article in journal (Refereed)
    Abstract [en]

    Volumetric combustion has been developed to realize a high substitution ratio of biomass in co-firing boilers, which features an intensive flue gas internal recirculation inside furnace. However, the characteristics of NOx and SOx emissions in large-scale boilers with volumetric combustion were not fully clear. In this paper, an Aspen Plus model of volumetric combustion system was built up based on a co-firing boiler. In order to characterize the reductions of NOx and SOx, three biomass substitution ratios were involved, namely, 100% biomass, 45% biomass with 55% coal, and 100% coal. The effects of flue gas recirculation ratio, air preheating temperature, oxygen concentration, and fuel types on pollutants emission in the volumetric combustion system were investigated. According to the results, it was concluded the higher substitution ratio of biomass in a co-firing boiler, the lower emissions of NOx and SOx. Moreover, flue gas internal recirculation is an effective pathway for NOx reduction and an increased recirculation ratio resulted in a significant decreasing of NOx emission; however, the SOx increased slightly. The influences of air preheating temperature and O2 concentration on NOx emission were getting weak with increasing of recirculation ratio. When 10% or even higher of flue gas was recycled, it was observed that almost no NOx formed thermodynamically under all studied conditions. Finally, to reach a low emission level of NOx, less energy would be consumed during biomass combustion than coal combustion process for internal recirculation of flue gas.

  • 3.
    Zhang, Xiaolei
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Micro-reaction Mechanism Study of the Biomass Thermal Conversion Process using Density Functional Theory2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Biomass, or bio-energy, is one of the most important alternative energies because of environmental concerns and the future shortage of fossil fuels. Multi-scaled bioenergy studies have been performed in the division of Energy and Furnace Technology, which included studies of macroscopic systems such as systems and reactors, modeling of computational fluid dynamics (CFD), and atomic/molecular level studies. The present thesis focus on the atomic/molecular level that based on quantum chemistry methods.

    The microscopic structure study of biomass is the first and an important step for the investigation of the biomass thermal conversion mechanism. Cellulose, hemicellulose, and lignin are the three most important components for biomass. The atomic interactions among these three main components were studied, including the hydrogen bond linkages between cellulose and hemicellulose, and the covalent bond linkages between hemicellulose and lignin.

    The decomposition of biomass is complicated and includes cellulose decomposition, hemicellulose decomposition, and lignin decomposition. As the main component of biomass, the mechanism of cellulose pyrolysis mechanism was focused on in this thesis. The study of this mechanism included an investigation of the pathways from cellulose to levoglucosan then to lower-molecular-weight species. Three different pathways were studied for the formation of levoglucosan from cellulose, and three different pathways were studied for the levoglucosan decomposition. The thermal properties for every reactant, intermediate, and product were obtained. The kinetics parameters (rate constant, pre-exponential factor, and activation energy) for every elementary step and pathway were calculated. For the formation of levoglucosan, the levoglucosan chain-end mechanism is the favored pathway due to the lower energy barrier; for the subsequent levoglucosan decomposition process, dehydration is a preferred first step and C-C bond scission is the most difficult pathway due to the strength of the C-C bonds.

    The biomass gasification process includes pyrolysis, char gasification, and a gas-phase reaction; Char gasification is considered to be the rate-controlling step because of its slower reaction rate. Char steam gasification can be described as the adsorption of steam on the char surface to form a surface complex, which may transfer to another surface complex, which then desorbs to give the gaseous products (CO and H2) and the solid product of the remaining char. The influences of several radicals (O, H, and OH) and molecules (H2 and O2) on steam adsorption were investigated. It was concluded that the reactivity order for these particles adsorbed onto both zigzag and armchair surfaces is O > H2 > H > OH > O2. For water adsorbs on both zigzag and armchair carbon surfaces, O and OH radicals accelerate water adsorption, but H, O2, and H2 have no significant influence on water adsorption.

    It was also shown that quantum chemistry (also known as molecular modeling) can be used to investigate the reaction mechanism of a macroscopic system. Detailed atomic/molecular descriptions can provide further understanding of the reaction process and possible products.

  • 4.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Li, Jun
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Formation Mechanism of Levoglucosan and Formaldehyde during Cellulose Pyrolysis2011In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 25, no 8, p. 3739-3746Article in journal (Refereed)
    Abstract [en]

    Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-beta-D-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments.

  • 5.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Density functional study on levoglucosan decomposition during cellulose pyrolysis2012In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 243Article in journal (Other academic)
  • 6.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Formation and Characterization of Carbon-Radical Precursors in Char Steam Gasification2010In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 24, p. 6513-6521Article in journal (Refereed)
    Abstract [en]

    Highly reactive radicals play an important role in high-temperature gasification processes. However, the effect of radicals on gasification has not been systematically investigated. In the present study, the formation of carbon-radical precursors using atomic radicals such as OH, O, and H and molecules such as H-2 and O-2 was characterized, and the effect of the precursors on the adsorption step of steam char gasification was studied using quantum chemistry methods. The results revealed that the radicals can be chemisorbed exothermically on char active sites, and the following order of reactivity was observed: O > H-2 > H > OH > O-2. Moreover, hydrogen bonds are formed between steam molecules and carbon-radical complexes. Steam molecule adsorption onto carbon-O and carbon-OH complexes is easier than adsorption onto clean carbon surfaces. Alternatively, adsorption on carbon-O-2, carbon-H-2, and carbon-H complexes is at the same level with that of clean carbon surfaces; thus, OH and O radicals accelerate the physical adsorption of steam onto the char surface, H radical and O-2 and H-2 molecules do not have a significant effect on adsorption.

  • 7.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kinetics of levoglucosan and formaldehyde formation during cellulose pyrolysis process2012In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 96, no 1, p. 383-391Article in journal (Refereed)
    Abstract [en]

    The mechanisms and kinetics studies of the formation of levoglucosan and formaldehyde from anhydroglucose radical have been carried out theoretically in this paper. The geometries and frequencies of all the stationary points are calculated at the B3LYP/6-31+G(D,P) level based on quantum mechanics, Six elementary reactions are found, and three global reactions are involved. The variational transition-state rate constants for the elementary reactions are calculated within 450-1500 K. The global rate constants for every pathway are evaluated from the sum of the individual elementary reaction rate constants. The first-order Arrhenius expressions for these six elementary reactions and the three pathways are suggested. By comparing with the experimental data, computational methods without tunneling correction give good description for Path1 (the formation of levoglucosan); while methods with tunneling correction (zero-curvature tunneling and small-curvature tunneling correction) give good results for Path2 (the first possibility for the formation of formaldehyde), all the test methods give similar results for Path3 (the second possibility for the formation of formaldehyde), all the modeling results for Path3 are in good agreement with the experimental data, verifying that it is the most possible way for the formation of formaldehyde during cellulose pyrolysis.

  • 8.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kinetics study on thermal dissociation of levoglucosan during cellulose pyrolysis2013In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 109, p. 476-483Article in journal (Refereed)
    Abstract [en]

    The mechanisms and kinetics studies of the levoglucosan (LG) primary decomposition during cellulose pyrolysis have been carried out theoretically in this paper. Three decomposition mechanisms (C-O bond scission, C-C bond scission, and LG dehydration) including nine pathways and 16 elementary reactions were studied at the B3LYP/6-31 + G(D, P) level based on quantum mechanics. The variational transition-state rate constants for every elementary reaction and every pathway were calculated within 298-1550 K. The first-order Arrhenius expressions for these 16 elementary reactions and nine pathways were suggested. It was concluded that computational method using transition state theory (TST) without tunneling correction gives good description for LG decomposition by comparing with the experimental result. With the temperature range of 667-1327 K, one dehydration pathway, with one water molecule composed of a hydrogen atom from C3 and a hydroxyl group from C2, is a preferred LG decomposition pathway by fitting well with the experimental results. The calculated Arrhenius plot of C-O bond scission mechanism is better agreed with the experimental Arrhenius plot than that of C-C bond scission. This C-O bond scission mechanism starts with breaking of C1-O5 and C6-O1 bonds with formation of CO molecule (C1-O1) simultaneously. C-C bond scission mechanism is the highest energetic barrier pathway for LG decomposition.

  • 9.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Modeling Study of Woody Biomass: Interactions of Cellulose, Hemicellulose, and Lignin2011In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 25, no 10, p. 4786-4795Article in journal (Refereed)
    Abstract [en]

    Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system.

  • 10.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis2012In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 96, p. 110-119Article in journal (Refereed)
    Abstract [en]

    Levoglucosan (1,6-anhydro-beta-D-glucopyranose) decomposition is an important step during cellulose pyrolysis and for secondary tar reactions. The mechanism of levoglucosan thermal decomposition was studied in this paper using density functional theory methods. The decomposition included direct C-O bond breaking, direct C-C bond breaking, and dehydration. In total, 9 different pathways, including 16 elementary reactions, were studied, in which levoglucosan serves as a reactant. The properties of the reactants, transition states, intermediates, and products for every elementary reaction were obtained. It was found that 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedialdehyde can be formed from the C-O bond breaking decomposition reactions. 1,2-Dihydroxyethene and hydroxyacetic acid vinyl ester can be formed from the C C bond breaking decomposition reactions. It was concluded that C-O bond breaking is easier than C-C bond breaking due to a lower activation energy and a higher released energy. During the 6 levoglucosan dehydration pathways, one water molecule which composed of a hydrogen atom from C3 and a hydroxyl group from C2 is the preferred pathway due to a lower activation energy and higher product stability.

  • 11.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Dong, Changqing
    Levoglucosan Formation Mechanism during Cellulose PyrolysisArticle in journal (Other academic)
  • 12.
    Zhang, Xiaolei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Dong, Changqing
    Levoglucosan formation mechanisms during cellulose pyrolysis2013In: Journal of Analytical and Applied Pyrolysis, ISSN 0165-2370, E-ISSN 1873-250X, Vol. 104, p. 19-27Article in journal (Refereed)
    Abstract [en]

    Levoglucosan is one important primary product during cellulose pyrolysis either as an intermediate or as a product. Three available mechanisms for levoglucosan formation have been studied theoretically in this paper, which are free-radical mechanism; glucose intermediate mechanism; and levoglucosan chain-end mechanism. All the elementary reactions included in the pathway of every mechanism were investigated; thermal properties including activation energy. Gibbs free energy, and enthalpy for every pathway were also calculated. It was concluded that free-radical mechanism has the highest energy barrier during the three levoglucosan formation mechanisms, glucose intermediate mechanism has lower energy barrier than free-radical mechanism, and levoglucosan chain-end mechanism is the most reasonable pathway because of the lowest energy barrier. By comparing with the activation energy obtained from the experimental results, it was also concluded that levoglucosan chain-end mechanism fits better with the experimental data for the formation of levoglucosan.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf