Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Pilkington, Georgia A.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Harris, Kathryn
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Bergendal, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Reddy, Akepati Bhaskar
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Pålsson, G. K.
    Vorobiev, A.
    Antzutkin, O. N.
    Glavatskih, Sergei
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.). Ghent University, Belgium.
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden.
    Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance2018In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 148, no 19, article id 193806Article in journal (Refereed)
    Abstract [en]

    Using neutron reflectivity, the electro-responsive structuring of the non-halogenated ionic liquid (IL) trihexyl(tetradecyl)phosphonium-bis(mandelato)borate, [P6,6,6,14][BMB], has been studied at a gold electrode surface in a polar solvent. For a 20% w/w IL mixture, contrast matched to the gold surface, distinct Kiessig fringes were observed for all potentials studied, indicative of a boundary layer of different composition to that of the bulk IL-solvent mixture. With applied potential, the amplitudes of the fringes from the gold-boundary layer interface varied systematically. These changes are attributable to the differing ratios of cations and anions in the boundary layer, leading to a greater or diminished contrast with the gold electrode, depending on the individual ion scattering length densities. Such electro-responsive changes were also evident in the reflectivities measured for the pure IL and a less concentrated (5% w/w) IL-solvent mixture at the same applied potentials, but gave rise to less pronounced changes. These measurements, therefore, demonstrate the enhanced sensitivity achieved by contrast matching the bulk solution and that the structure of the IL boundary layers formed in mixtures is strongly influenced by the bulk concentration. Together these results represent an important step in characterising IL boundary layers in IL-solvent mixtures and provide clear evidence of electro-responsive structuring of IL ions in their solutions with applied potential.

  • 2.
    Radiom, Milad
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Pedraz, Patricia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Pilkington, Georgia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Rohlmann, Patrick
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Glavatskih, Sergei
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.). Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Ghent University, B-9052 Ghent, Belgium.
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE-100 44 Stockholm, Sweden.
    Anomalous Interfacial Structuring of a Non-Halogenated Ionic Liquid: Effect of Substrate and Temperature2018In: Colloids and Interfaces, ISSN 2504-5377, Vol. 2, no 4, article id 60Article in journal (Refereed)
    Abstract [en]

    We investigate the interfacial properties of the non-halogenated ionic liquid (IL), trihexyl(tetradecyl)phosphonium bis(mandelato)borate, [P6,6,6,14][BMB], in proximity to solid surfaces, by means of surface force measurement. The system consists of sharp atomic force microscopy (AFM) tips interacting with solid surfaces of mica, silica, and gold. We find that the force response has a monotonic form, from which a characteristic steric decay length can be extracted. The decay length is comparable with the size of the ions, suggesting that a layer is formed on the surface, but that it is diffuse. The long alkyl chains of the cation, the large size of the anion, as well as crowding of the cations at the surface of negatively charged mica, are all factors which are likely to oppose the interfacial stratification which has, hitherto, been considered a characteristic of ionic liquids. The variation in the decay length also reveals differences in the layer composition at different surfaces, which can be related to their surface charge. This, in turn, allows the conclusion that silica has a low surface charge in this aprotic ionic liquid. Furthermore, the effect of temperature has been investigated. Elevating the temperature to 40 °C causes negligible changes in the interaction. At 80 °C and 120 °C, we observe a layering artefact which precludes further analysis, and we present the underlying instrumental origin of this rather universal artefact.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf