Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adekunle, K. F.
    et al.
    Cho, S. W.
    Patzelt, C.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Skrifvars, M.
    Impact and flexural properties of flax fabrics and lyocell fiber reinforced bio-based thermoset for automotive and structural applications2012In: ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, European Conference on Composite Materials, ECCM , 2012Conference paper (Refereed)
    Abstract [en]

    A bio-based thermoset resin was reinforced with flax fabrics and Lyocell fiber. The effect of different weave architecture was studied with four flax fabrics with different architecture: plain, twill (two different types) and dobby. The effect of the outer ply thickness was studied and characterized with flexural and impact testing. Composites manufactured with plain weave reinforcement had the best mechanical properties. The tensile strength, tensile modulus, flexural strength, flexural modulus and impact strength was 280 MPa, 32 GPa, 250 MPa, 25 GPa and 75 kJ/m2 respectively.

  • 2. Adekunle, Kayode
    et al.
    Cho, Sung-Woo
    Patzelt, Christian
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Skrifvars, Mikael
    Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset2011In: Journal of reinforced plastics and composites (Print), ISSN 0731-6844, E-ISSN 1530-7964, Vol. 30, no 8, p. 685-697Article in journal (Refereed)
    Abstract [en]

    A bio-based thermoset resin was reinforced with flax fabrics and Lyocell fiber. The effect of different weave architectures was studied with four flax fabrics with different architectures: plain, twill (two different types), and dobby. The effect of the outer ply thickness was studied and characterized with flexural and impact testing. Composites manufactured with plain weave reinforcement had the best mechanical properties. The tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength were 280MPa, 32GPa, 250MPa, 25GPa, and 75 kJ/m (2), respectively. Reinforcements with twill-weave architecture did not impart appreciable flexural strength or flexural modulus even when the outer thickness was increased. Plain- and dobby (basket woven style)-weave architectures gave better reinforcing effects and the flexural properties increased with an increase in outer thickness. Water absorption properties of the composites were studied and it was observed that the hybridization with Lyocell fiber reduced the water uptake. Field-emission scanning electron microscopy was used to study the micro-structural properties of the composites.

  • 3.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Freeze-Dried Wheat Gluten-Based Foams2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents wheat gluten foams as an alternative to the available commercialfoams. Polymeric foams, like all plastics, are mostly made from petroleum, and this isaffecting the environment negatively with the emission of greenhouse gases and generation oflandfills. During the past decades, there has been a drive to replace petroleum-based plasticswith alternatives made from renewable resources. Wheat gluten has interesting and promisingproperties as an alternative resource. As a large by-product in Europe from the biofuelindustry it is largely available and at a low price.In order to develop an insulation material based on this renewable resource, foammaterials have been made by freeze-drying frozen mixtures consisting of either acommercially available wheat gluten powder or various protein rich fractions of gliadins orglutenins extracted from the commercial powder. Some of the foams were further modifiedwith the addition of glycerol as plasticizer or bacterial cellulose as a reinforcing fiber. Theresulting cellular structure was shown to depend on the initial gluten concentration, and thefraction and type of additive used. The wheat gluten foam materials contained mainly an openpore structure with average pore diameters ranging from 20 to 70 μm.The addition of glycerol and/or bacterial cellulose changed the foam structure, theprotein structure and the mechanical properties. The addition of 20 wt.% glycerol wassufficient to plasticize the foam and to achieve a low modulus and a high strain recovery, butwith glycerol the average pores size increased due to the difference in freezing conditions.The bacterial cellulose gave a small and insignificant increase in stiffness and also a moreuniform cell structure. In addition, the glycerol-containing samples had a more polymerizedprotein structure, whereas the foams containing fibers had a lower degree of polymerization.Foams made from a glutenin rich fraction were much stiffer and stronger than gliadinrich foams. The glutenin rich foams had a higher degree of polymerization than the latter,foam the relatively mild heat treatment.The gluten foams were promising as insulation materials. The thermal conductivityvalues were 0.04-0.05 (W/m⋅°C), and were close to that of commercially available closed cellpolystyrene and polyurethane foams, that both have values at ca. 0.03 (W/m⋅°C).The wheat gluten foams showed also promising combustion properties with longignition times, no material dripping and a large content of residual char. The glycerolcontainingfoam however, exhibited a more rigorous bubbling and a larger flame.

  • 4.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gluten Protein-Based Microcellular Foams and Composites: Development and Functional Properties2010Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Most common foams are produced from non-renewable resources (e.g., synthetic plastics),with a number of environmental concerns, hence there is a demand for alternative bio-derivedfoam materials. Wheat gluten protein is widely known to have excellent foaming properties(e.g., in bread making) and is a possible alternative resource for making foam products.Gluten foams were produced using a lyophilization process (freeze-drying) and variousgluten/water-based mixtures were studied. Foams with varying properties were obtained bymixing various amounts of wheat gluten with glycerol (plasticizer) and bacterial cellulosefibers (reinforcement). The gluten foams looked like bread with a beige color and few visuallydetectable surface pores. They were generally characterized as having an open cell structurewith a porosity in the range 75-85% and pore sizes ranging between 20 and 73 μm. Differentmechanical properties were obtained by using varying gluten concentrations and the differentadditives. Plasticizing with glycerol lead to increased flexibility of the foams, with the abilityto recover up to 95% after being compressed by 80%. By reinforcing with bacterial cellulosefibers the material became stiffer, with an increased elastic modulus. Confocal lasermicroscopy revealed that the fibers and gluten interacted. Analyzing the protein structure ofthe foams revealed that the different additives resulted in structures with different proteinpatterns. The samples containing glycerol were more polymerized and less extractable in SDS,whereas the fiber containing samples were only polymerized in small regions and easilyextracted in SDS. Generally the gluten foams had low conductivity values, with some valuesbelow 0.05 W/(m K), which was found to be dependant on density and pore structure. Glutenfoams were also shown to be more difficult to ignite when compared to other conventionalfoams. It was further observed that the foams did not drip making it increasingly difficult forthe fire to spread.

  • 5.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Kuktaite, R.
    Plivelic, T. S.
    Rasheed, F.
    Johansson, E.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Novel freeze-dried foams from glutenin- and gliadin-rich fractions2012In: RSC Advances, ISSN 2046-2069, Vol. 2, no 16, p. 6617-6627Article in journal (Refereed)
    Abstract [en]

    This is the first study on freeze-dried foams prepared from glutenin- and gliadin-rich fractions of wheat gluten and blends thereof. It was found that the foam density and stiffness could be controlled by a suitable choice of the glutenin/gliadin ratio. The glutenin-rich samples had the highest foam densities and the density decreased with increasing gliadin content. The compression modulus also decreased with increasing gliadin content, which was explained by the decrease in foam density, a more open porosity and the more aggregated/polymerized structure in the presence of glutenin. IR and SE-HPLC revealed that the least aggregated foams were those consisting only of the gliadin-rich fraction. Confocal laser scanning microscopy revealed the presence of both HMW-glutenin and gliadin (to a certain extent probably resisting the ethanol extraction process) in the glutenin-rich foams. SAXS indicated that the gliadin-rich fraction contributed with weakly correlated protein aggregates with a characteristic distance of 40-43 Å.

  • 6.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Kuktaite, Ramune
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Mechanical Properties and Network Structure of Wheat Gluten Foams2011In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, no 5, p. 1707-1715Article in journal (Refereed)
    Abstract [en]

    This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.

  • 7.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Kuktaite, Ramune
    Plivelic, Tomás S.
    Rasheed, Faiza
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Freeze-dried forms made from wheat glutenin- and gliadin-rich fractionsManuscript (preprint) (Other academic)
  • 8.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Holgate, Tim
    Xu, Jianxiao
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Thermal Conductivity and Combustion Properties of Wheat Gluten Foams2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 3, p. 1629-1635Article in journal (Refereed)
    Abstract [en]

    Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam.

  • 9.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Menon, Mohan
    Plackett, David
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Novel Foams Based on Freeze-Dried Renewable Vital Wheat Gluten2010In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 295, no 9, p. 796-801Article in journal (Refereed)
    Abstract [en]

    A new way of producing rigid or semi-rigid foams from vital wheat gluten using a freeze-drying process is reported. Water/gluten-based mixtures were frozen and freeze-dried. Different foam structures were obtained by varying the mixing process and wheat gluten concentration, or by adding glycerol or bacterial cellulose nanofibers. MIP revealed that the foams had mainly an open porosity peaking at 93%. The average pore diameter ranged between 20 and 73 mm; the sample with the highest wheat gluten concentration and no plasticizer had the smallest pores. Immersion tests with limonene revealed that the foams rapidly soaked up the liquid. An especially interesting feature of the low-wheat-concentration foams was the "in situ'' created soft-top-rigid-bottom foams.

  • 10.
    Blomfeldt, Thomas Olof John
    et al.
    KTH.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    Swedish Univ Agr Sci, Dept Crop Sci, S-23053 Alnarp, Sweden..
    CELL 176-Insulation material made from wheat gluten2008In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 235Article in journal (Other academic)
  • 11.
    Cho, Sung-Woo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Blomfeldt, Thomas O. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Halonen, Helena
    Gällstedt, Mikael
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wheat Gluten-Laminated Paperboard with Improved Moisture Barrier Properties: A New Concept Using a Plasticizer (Glycerol) Containing a Hydrophobic Component (Oleic Acid)2012In: International Journal of Polymer Science, ISSN 1687-9422, p. 454359-Article in journal (Refereed)
    Abstract [en]

    This paper presents a novel approach to reduce the water vapor transmission rate (WVTR) and water absorbance of wheat gluten/paperboard laminates by introducing a hydrophobic component (oleic acid (OA)) into the hydrophilic plasticizer (glycerol). Whereas the paperboard showed immeasurably high WVTR, the laminate with gluten/glycerol yielded finite values. More importantly, by incorporating 75wt.% OA into the plasticizer, the WVTR and water absorbance were reduced by, respectively, a factor of three and 1.5-2. Of particular interest was that the mechanical properties were not changing dramatically between 0 and 50 wt.% OA. The results showed clear benefits of combining a gluten film with paperboard. Whereas the paperboard provided toughness, the WG layer contributed with improved moisture barrier properties. In addition, WVTR indicated that the paperboard reduced the swelling of the outer gluten/glycerol layer in moist conditions; a free standing gluten/glycerol film would yield infinite, rather than finite, WVTR values.

  • 12.
    Cozzolino, Carlo A.
    et al.
    University of Sassari.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Piga, Antonio
    University of Sassari.
    Piergiovanni, Luciano
    Farris, Stefano
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Dye release behavior from polyvinyl alcohol films in a hydro-alcoholic medium: Influence of physicochemical heterogeneity2012In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 403, p. 45-53Article in journal (Refereed)
    Abstract [en]

    In this paper we investigated the release kinetics of a model drug-like compound (Coomassie brilliant blue) from polyvinyl alcohol (PVOH) films into a hydro-alcoholic solution as a function of the physicochemical properties of the polymer matrix. After 33 days of monitoring, the total amount released ranged from 10% for the high hydrolysis degree/low molecular weight PVOH films to 60% for the low hydrolysis degree/low molecular weight films. Mathematical modeling allowed for an estimation of the two diffusion coefficients (D 1 and D 2) that characterized the release profile of the dye from the films. The degree of hydrolysis dramatically affected both the morphology and the physical structure of the polymer network. A high hydroxyl group content was also associated with the shifting of second order and first order transitions toward higher temperatures, with a concurrent increase in crystallinity. Moreover, the higher the degree of hydrolysis, the higher the affinity of the polymer to the negatively charged molecule dye. Selection of the polymer matrix based on physicochemical criteria may help in achieving different release patterns, thereby representing the first step for the production of polymer systems with modulated release properties.

  • 13. Hansen, Natanya M. L.
    et al.
    Blomfeldt, Thomas O. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Plackett, David V.
    Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan2012In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 19, no 6, p. 2015-2031Article in journal (Refereed)
    Abstract [en]

    Xylans, an important sub-class of hemicelluloses, represent a largely untapped resource for new renewable materials derived from biomass. As with other carbohydrates, nanocellulose reinforcement of xylans is interesting as a route to new bio-materials. With this in mind, birch wood xylan was combined with nanofibrillated cellulose (NFC) and films were cast with and without glycerol, sorbitol or methoxypolyethylene glycol (MPEG) as plasticizers. Microscopy revealed some NFC agglomeration in the composite films as well as a layered nanocellulose structure. Equilibrium moisture content in plasticized films increased with glycerol content but was independent of xylan:NFC ratio in unplasticized films. Sorbitol- and MPEG-plasticized films showed equilibrium moisture contents of approximately 10 wt% independent of plasticizer content. Tensile testing revealed increases in tensile strength with increased NFC content in the xylan:NFC composition range from 50:50 to 80:20 and plasticizer addition generally provided less brittle films. The oxygen permeability of unplasticized xylan-NFC films fell into a range which was similar to that for previously measured pure NFC films and was statistically independent of the xylan:NFC ratio. Water vapor permeability values of 1.9-2.8.10(-11) g Pa-1 m(-1) s(-1) were found for unplasticized composite films, but these values were significantly reduced in the case of films plasticized with 10-40 wt% sorbitol.

  • 14. Introzzi, Laura
    et al.
    Blomfeldt, Thomas O. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Trabattoni, Silvia
    Tavazzi, Silvia
    Santo, Nadia
    Schiraldi, Alberto
    Piergiovanni, Luciano
    Farris, Stefano
    Ultrasound-Assisted Pullulan/Montmorillonite Bionanocomposite Coating with High Oxygen Barrier Properties2012In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, no 30, p. 11206-11214Article in journal (Refereed)
    Abstract [en]

    In this paper, the preparation and characterization of oxygen barrier pullulan sodium montmorillonite (Na+-MMT) nanocomposite coatings are presented for the first time. Full exfoliation of platelets during preparation of the coating water dispersions was mediated by ultrasonic treatment, which turned out to be a pivotal factor in the oxygen barrier performance of the final material even at high relative humidity (RH) conditions [oxygen permeability coefficients similar to 1.43 +/- 0.39 and 258.05 +/- 13.78 mL.mu m.m(-2).(24 h)(-1).atm(-1) at 23 degrees C and 0% RH and 70% RH, respectively]. At the micro- and nanoscale, the reasons are discussed. The final morphology of the coatings revealed that clay lamellae were stacked on top of one another, probably due to the forced confinement of the platelets within the coating thickness after solvent evaporation. This was also confirmed by modeling the experimental oxygen permeability data with the well-known Nielsen and Cussler permeation theoretical models, which suggested a reasonable aspect ratio (alpha) of similar to 100. Electron microscopic analyses also disclosed a peculiar cell-like arrangement of the platelets. The stacking of the clay lamellae and the cell-like arrangement create the excellent oxygen barrier properties. Finally, we demonstrated that the slight haze increase in the bionanocomposite coating materials arising from the addition of the clays depends on the clay concentration but not so much on the sonication time, due to the balance of opposite effects after sonication (an increase in the number of scattering centers but a reduction in their size).

  • 15. Sarossy, Zsuzsa
    et al.
    Blomfeldt, Thomas O. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Koch, Christian Bender
    Ray, Suprakas Sinha
    Plackett, David
    Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Baffler Properties2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 7, p. 3378-3386Article in journal (Refereed)
    Abstract [en]

    Hemicelluloses represent a largely unutilized resource for future bioderived films in packaging and other applications. However, improvement of film properties is needed in order to transfer this potential into reality. In this context, sepiolite, a fibrous clay, was investigated as an additive to enhance the properties of rye flour arabinoxylan. Composite films cast from arabinoxylan solutions and sepiolite suspensions in water were transparent or semitransparent at additive loadings in the 2.5-10 wt % range. Scanning electron microscopy showed that the sepiolite was well dispersed in the arabinoxylan films and sepiolite fiber aggregation was not found. FT-IR spectroscopy provided some evidence for hydrogen bonding between sepiolite and arabinoxylan. Consistent with these findings, mechanical testing showed increases in film stiffness and strength with sepiolite addition and the effect of poly(ethylene glycol) methyl ether (mPEG) plasticizer addition. Incorporation of sepiolite did not significantly influence the thermal degradation or the gas barrier properties of arabinoxylan films, which is likely a consequence of sepiolite fiber morphology. In summary, sepiolite was shown to have potential as an additive to obtain stronger hemicellulose films although other approaches, possibly in combination with the use of sepiolite, would be needed if enhanced film barrier properties are required for specific applications.

  • 16.
    Ture, Hasan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Blomfeldt, Tomas O. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gällstedt, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Farris, Stefano
    University of Milan.
    Nanostructured Silica Wheat Gluten Hybrid Materials Prepared by Catalytic Sol-Gel Chemistry2013In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 214, no 10, p. 1131-1139Article in journal (Refereed)
    Abstract [en]

    The main physicochemical properties of nanostructured silica/wheat gluten hybrid composites are presented. The extraction experiments suggest that the protein phase is intimately encased within the silica matrix, with silica–protein interactions driven by hydrogen bonding, as indicated by IR spectra. Spectroscopic results also show that silica induces a higher degree of constraint of the wheat gluten matrix, despite less aggregation. Moisture diffusion properties of the hybrid materials are investigated by a combined “desorption/sorption” approach. While the reduction of the moisture diffusivity in the presence of silica can be described by the geometrical impedance of a “sintered” porous solid, a time-dependent relaxation/restructuring of the composite apparently occurs during the sorption-desorption cycle.

  • 17.
    Türe, Hasan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gällstedt, Mikael
    Innventia AB.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Properties of Wheat-Gluten/Montmorillonite Nanocomposite Films Obtained by a Solvent-Free Extrusion Process2012In: Journal of polymers and the environment, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 20, no 4, p. 1038-1045Article in journal (Refereed)
    Abstract [en]

    This is, to our knowledge, the first study of wheat-gluten-based nanocomposite films prepared by a solvent-free extrusion process. Wheat gluten/montmorillonite nanocomposite films were obtained in a single screw-extruder using urea as a combined denaturant and plasticizer. The oxygen permeability and water vapor transmission rate of the films decreased by respectively factors of 1. 9 and 1. 3 when 5 wt.% clay was added. At the same time, the stiffness increased by a factor of 1. 5, without any critical loss of extensibility. Field emission scanning electron microscopy (FE-SEM) and Energy-dispersive X-ray analysis indicated that the clay particles were layered mainly in the plane of the extruded film. It was possible to identify individual platelets/tactoids with FE-SEM and, together with findings from transmission electron microscopy, atomic force microscopy and X-ray diffraction, it was concluded that the clay existed as individual clay platelets, intercalated tactoids and agglomerates. Thermogravimetric analysis showed that the thermal stability of the extrudates was improved by the addition of clay.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf