Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Xiang, Yu
    et al.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Reuterskiöld-Hedlund, Carl
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yu, Xingang
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yang, Chen
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Zabel, Thomas
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Hammar, Mattias
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasersManuscript (preprint) (Other academic)
    Abstract [en]

    We report on the design, fabrication and analysis of vertical-cavity surface-emitting transistor-lasers (T-VCSELs) based on the homogeneous integration of an InGaAs/GaAs VCSEL and an AlGaAs/GaAs pnp-heterojunction bipolar transistor (HBT). Epitaxial regrowth confinement, modulation doping, intracavity contacting and non-conducting mirrors are used to ensure a low-loss structure, and a variety of design variations are investigated for a proper internal biasing and current injection to ensure a wide operating range. Optimized devices show mW-range output power, mA-range base threshold current and high-temperature operation to at least 60°C with the transistor in its active mode of operation for base currents well beyond threshold. Current confinement schemes based on pnp-blocking layers or a buried tunnel junction are investigated as well as asymmetric current injection to improve the lateral feeding.

  • 2.
    Xiang, Yu
    et al.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Reuterskiöld-Hedlund, Carl
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yu, Xingang
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yang, Chen
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Zabel, Thomas
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Hammar, Mattias
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Akram, M. N.
    AlGaAs/GaAs/InGaAs pnp-type vertical-cavity surface-emitting transistor-lasers2015In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 12, p. 15680-15699Article in journal (Refereed)
    Abstract [en]

    We report on the design, fabrication and analysis of vertical-cavity surface-emitting transistor-lasers (T-VCSELs) based on the homogeneous integration of an InGaAs/GaAs VCSEL and an AlGaAs/GaAs pnp-heterojunction bipolar transistor (HBT). Epitaxial regrowth confinement, modulation doping, intracavity contacting and non-conducting mirrors are used to ensure a low-loss structure, and a variety of design variations are investigated for a proper internal biasing and current injection to ensure a wide operating range. Optimized devices show mW-range output power, mA-range base threshold current and high-temperature operation to at least 60 degrees C with the transistor in its active mode of operation for base currents well beyond threshold. Current confinement schemes based on pnp-blocking layers or a buried tunnel junction are investigated as well as asymmetric current injection for reduced extrinsic resistances.

  • 3.
    Xiang, Yu
    et al.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Reuterskiöld-Hedlund, Carl
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yu, Xingang
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Yang, Chen
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Zabel, Thomas
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Hammar, Mattias
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Akram, Muhammed Nadeem
    University Collage of Buskerud and Vestfold.
    Performance Optimization of GaAs-Based Vertical-Cavity Surface-Emitting Transistor-Lasers2015In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 27, no 7, p. 721-724Article in journal (Refereed)
    Abstract [en]

    We report on the optimization of pnp-type verticalcavity surface-emitting transistor-lasers based on the fusion between an AlGaAs/GaAs heterojunction bipolar transistor and an InGaAs/GaAs VCSEL using an epitaxial regrowth process. It is shown how a proper design of the base region can extend the transistor active range of operation well beyond lasing threshold, thereby resulting in typical transistor laser operational characteristics including mW-range output power, mA-range base threshold current, record-low power dissipation under laser operation, and continuous-wave operation up to at least 60°C. A pronounced breakdown in the collector current characteristics in the limit of high base current and/or emitter-collector voltage accompanied by a quenching of the optical output power is interpreted as being related to quantum well band-filling.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf