Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Arnling Bååth, Jenny
    et al.
    Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Giummarella, Nicola
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Klaubauf, Sylvia
    Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Olsson, Lisbeth
    Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
    A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds2016In: FEBS Letters, ISSN 0014-5793, E-ISSN 1873-3468, Vol. 590, no 16, p. 2611-2618Article in journal (Refereed)
    Abstract [en]

    The Glucuronoyl esterases (GE) have been proposed to target lignin-carbohydrate (LC) ester bonds between lignin moieties and glucuronic acid side groups of xylan, but to date, no direct observations of enzymatic cleavage on native LC ester bonds have been demonstrated. In the present investigation, LCC fractions from spruce and birch were treated with a recombinantly produced GE originating from Acremonium alcalophilum (AaGE1). A combination of size exclusion chromatography and 31P NMR analyses of phosphitylated LCC samples, before and after AaGE1 treatment provided the first evidence for cleavage of the LC ester linkages existing in wood.

  • 2.
    Deshpande, Raghu
    et al.
    MoRe Research, SE-89122 Örnsköldsvik, Sweden.
    Giummarella, Nicola
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. Wallenberg Wood Science Center.
    Germgård, Ulf
    Karlstad University, SE-65188 Karlstad, Sweden.
    Sundvall, Lars
    MoRe Research, SE-89122 Örnsköldsvik, Sweden.
    Grundberg, Hans
    Domsjö Fabriker, SE-89186 Örnsköldsvik, Sweden.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    The reactivity of lignin carbohydrate complex (LCC) during manufacture of dissolving sulfite pulp from softwood2018In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 115, p. 315-322Article in journal (Refereed)
    Abstract [en]

    The presence of covalent bonds between lignin and polysaccharides was investigated in dissolving pulps made with one-stage and two-stage acidic sulfite pulping for 100% pine heartwood raw material. The covalent bonds between lignin and pulp polysaccharides occurred mainly to xylan and glucomannan and were of the phenyl glycosides and γ–esters types. The α-ethers that are common in wood were missing in the studied pulp samples. Based on these findings and known lignin reactions during sulfite pulping, a mechanism explaining the absence of the α-ethers is discussed. It is suggested that the lignin carbohydrate bonds may play a vital role in lignin recalcitrance.

  • 3.
    Geng, Xiumei
    et al.
    Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States .
    Zhang, Yelong
    Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States .
    Jiao, Li
    Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States .
    Yang, Lei
    Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States .
    Hamel, Jonathan
    Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States .
    Giummarella, Nicola
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Zhang, Liming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Zhu, Hongli
    Bioinspired Ultrastable Lignin Cathode via Graphene Reconfiguration for Energy Storage2017In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 5, no 4, p. 3553-3561Article in journal (Refereed)
    Abstract [en]

    Lignin extracted from trees is one of the most abundant biopolymers on Earth. Quinone, a sub-structure in lignin, can be used for energy storage via reversible redox reactions through absorbing and releasing electrons and protons. However, these efforts have encountered hindrances, such as short life cycle, low cycling efficiency, and a high self-discharge rate. All of these issues are related to electrode dissolution by electrolyte solvents and the insulating nature of lignin. Addressing these critical challenges, for the first time we use a reconfigurable and hierarchical graphene cage to capture the lignin by mimicking the prey-trapping of venus flytraps. The reconfigurable graphene confines the lignin within the electrode to prevent its dissolution, while acting as a three-dimensional current collector to provide efficient electron transport pathways during the electrochemical reactions. This bioinspired design enables the best cycling performance of lignin reported so far at 88% capacitance retention for 15000 cycles and 211 F g-1 capacitance at a current density of 1.0 A g-1. This study demonstrates a feasible and effective strategy for solving the long-term cycling difficulties of lignin-based electrochemically active species, and makes it possible to utilize lignin as an efficient, cheap, and renewable energy storage material.

  • 4.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Fundamental Aspects of Lignin Carbohydrate Complexes (LCC): Mechanisms, Recalcitrance and Material concepts2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Covalent bonds between lignin and carbohydrates, forming a matrix referred to as lignin carbohydrate complexes (LCC), remain one of the most controversial topics in wood chemistry. A key issue is whether they are formed during chemical and mechanical pretreatments of the compact wood structure or actually present in wood prior to isolation. A fundamental understanding of their origin and reactivity is vital to unravel their role in wood formation and recalcitrance. Recalcitrance, specifically, has affected the successful development of effective and clean fractionation of wood polymers.

    To address the above-mentioned concerns, we have developed a novel mild universal and quantitative fractionation protocol of LCC that, when combined with robust spectroscopic analytical tools, including a variety of NMR techniques, GC MS and SEC, reveals deeper insights into the molecular structure of LCC.

    This method was applied to both hardwood and softwood LCCs and revealed interesting findings on molecular-level regulatory mechanism for lignin carbohydrate (LC) bond formation such as the role of acetylation in hemicelluloses. Moreover, the role of LC bonds on recalcitrance during subcritical water extraction was unveiled.

    Bio-mimicking in vitro lignin polymerization was adopted to investigate whether LC bonds are native or formed during isolation from wood. For the first time, direct evidence lending support that they are formed in wood cells was demonstrated, thus corroborating the mechanisms suggested in the literature.  

    Furthermore, based on the overall LCC study, we suggest a sequence for how LC bonds may form in vitro.

    Finally, of special interest to material science, the unveiled LC bond formation mechanism inspired a green, biomimetic, one-pot synthesis of functionalized lignin starting from monomeric components. Excellent selectivity of functionalization is reported and production of lignin-based recyclable materials, based on the premise of this functionalization philosophy, is discussed.

    The full text will be freely available from 2019-05-15 11:59
  • 5.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Nativity of Lignin Carbohydrate Bonds substantiated by novel biomimetic synthesisManuscript (preprint) (Other academic)
  • 6.
    Giummarella, Nicola
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gioia, Claudio
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Civil, Chemical, Environmental and Materials Engineering. Universita´ di Bologna.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed)
    Abstract [en]

    Lignin is the most abundant renewable source of phenolic compound with great application potential in renewable materials, biofuels and platform chemicals. Current technology for producing cellulose-rich fibers co-produces heterogeneous lignin, which includes an untapped source of monomeric phenolics. One such monomer also happen to be the main monomer in soft wood lignin biosynthesis, namely coniferyl alcohol. Herein, we investigate the potential of coniferyl alcohol as a platform monomer for the biomimetic production of tailored functionalized oligolignols with desirable properties for material synthesis. Accordingly, a bifunctional molecule with at least one carboxyl-ended functionality is included with coniferyl alcohol in biomimetic lignin synthesis to, in one-pot, produce a functionalized lignin. The functionalization mechanism is a nucleophilic addition reaction to quinone methide intermediate of lignin polymerization. The solvent systems applied were pure water or 50% aqueous acetone. Several bi-functional molecules differing in the second functionality were successfully inserted in the lignin demonstrating the platform component of this work. Detailed characterizations were performed by a combination of NMR techniques which include 1H NMR, COSY-90, 31P NMR, 13C NMR, 13C APT, HSQC, HMBC and HSQC TOCSY. Excellent selectivity towards benzylic carbon and high functionalization degree were noted. The structure of lignin was tailored through solvent system choice, with the 50% aqeuous acetone producing a skeletal structure favorable for high functionalization degrees. Finally, material concepts are demonstrated using classical Thiol-ene- and Diels Alder- chemistries to show potential for thermoset- and thermoplastic- concepts, respectively. The functionalization concept presents unprecedentent opportunities for green production of lignin-based recyclable biomaterials.

  • 7.
    Giummarella, Nicola
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Salmén, Lennart
    Rise Bioecon, Drottning Kristinas Väg 61,Box 5604, SE-11486 Stockholm, Sweden.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    On the effect of hemicellulose removal on cellulose-lignin interactions2017In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, no 4, p. 542-549Article in journal (Refereed)
    Abstract [en]

    In a recent study, it was suggested that there could be direct associations between cellulose and lignin in mild alkaline cooked pulps. The observation was based on studies showing that the molecular straining of lignin was similar to that of cellulose. This finding has serious ramifications for technical production of pulps as it could expand on what is known about recalcitrant lignin removal during pulping. Herein, we investigate the possible interaction between cellulose and lignin discussing possible mechanisms involved at the nano-and molecular-scales, and present support for that the removal of hemicellulose by hot water extraction or mild kraft pulping causes strong interactions between lignin and cellulose.

  • 8.
    Giummarella, Nicola
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Structural Basis for the Formation and Regulation of Lignin–Xylan Bonds in Birch2016In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 4, no 10, p. 5319-5326Article in journal (Refereed)
    Abstract [en]

    The covalent connectivity between lignin and polysaccharides forming the so-called lignin–carbohydrate complexes (LCCs) is important to obtain fundamental knowledge on wood formation and may shed light on molecular aspects of wood processing. Although widely studied, unequivocal proofs of their existence in native-state biomass are still lacking, mainly because of harsh preanalytical fractionation conditions that could cause artifacts. In the present study, we applied a mild protocol for quantitative fractionation of LCCs and performed detailed structural studies using 2D HSQC NMR spectroscopy, 31P NMR spectroscopy, and thioacidolysis in combination with GC–MS and GC with flame ionization detection. The detailed structural analysis of LCCs, including both lignin and the carbohydrate skeleton, unveiled insights into the role of molecular structure of xylan on the type of lignin–carbohydrate (LC) bonds formed. More specifically, it is shown that xylan LCCs differ in the degree of substitution of hydroxyl functionality on the xylan skeleton by the presence of acetyl- or 4-O-methylglucuronic acid. The highly substituted xylan had a lower prevalence of phenyl glycosidic and benzyl ether LC bond types than the lowly substituted xylan. In addition, structural differences in the lignin part of the LCCs were observed. On the basis of the results, it is suggested that acetylation on xylan regulates the type and frequency of LC bonds.

  • 9.
    Giummarella, Nicola
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Structural Insights on Recalcitrance during Hydrothermal Hemicellulose Extraction from Wood2017In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 6, p. 5156-5165Article in journal (Refereed)
    Abstract [en]

    Hydrothermal extraction of hemicelluloses from lignocellulosic biomass for conversion to renewable materials or fuels has captured attention. The extraction is however partial and some lignin is codissolved. Herein, we investigated the role of molecular structure in the recalcitrance. Wood meal of Spruce and Birch were subjected to pressurized hydrothermal extraction at 160 °C for 2 h, which extracted 68–75% of the hemicelluloses. 2D heteronuclear single quantum coherence (HSQC) NMR, HSQC-TOCSY, and 13C NMR were applied for structural studies of both extracts and residues. Subsequent to the known partial hydrolysis of native carbon-2 and carbon-3 acetates in hemicellulose, some acetylation of primary alcohols on hemicelluloses and lignin was observed. Lignin carbohydrate complexes (LCC) were detected in both the extracts and residues. In Spruce extracts, only the phenyl glycoside-type of LCC was detected. Birch extracts contained both the phenyl glycoside and benzyl ether-types. In the hydrothermal wood residues of both species, benzyl ether- and gamma (γ)-ester-LCC were present. Structural changes in lignin included decrease in aryl ether (βO4) content and increases in resinol- (ββ) and phenyl coumaran (β5) contents. On the basis of the overall analysis, the mechanisms and contribution of molecular structure to recalcitrance is discussed.

  • 10.
    Giummarella, Nicola
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. CleanFlow Black AB, Sweden.
    Lindgren, Christofer
    CleanFlow Black AB, Sweden.
    Lindström, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. CleanFlow Black AB, Sweden.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lignin Prepared by Ultrafiltration of Black Liquor: Investigation of Solubility, Viscosity, and Ash Content2016In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 11, no 2, p. 3494-3510Article in journal (Refereed)
    Abstract [en]

    Technical lignin, which can be potentially obtained in large amounts as a by-product from kraft pulping, represents a potential resource for manufacturing fuels and chemicals. Upgrading of lignin, by lowering its molecular weight, is a valuable alternative to precipitation from black liquor, which occurs in the Lignoboost process. The solubility properties of Lignoboost lignin and filtered lignin in a number of technically feasible solvents were compared, and it was found that both lignins were dissolved in similar solvents. With the exception of furfural, the best lignin solvents generally were organic solvents miscible with water, such as methanol. It was possible to dissolve more filtered lignin in higher concentrations than Lignoboost lignin; additionally, the viscosities of the filtered lignin solutions were also considerably lower than those of Lignoboost lignin, especially at higher concentrations. Methods for non-organic component removal from filtrated lignin were tested, and it was concluded that several cold acidic treatments after dewatering can lower the ash content to values below 0.5% by weight.

  • 11.
    Giummarella, Nicola
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Wallenberg Wood Science Center.
    Zhang, Liming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Wallenberg Wood Science Center.
    Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce2016In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 6, no 48, p. 42120-42131Article in journal (Refereed)
    Abstract [en]

    A protocol for the quantitative fractionation of lignin carbohydrate complexes (LCC) from wood under mild conditions has been developed. All operations occur at near-neutral pH conditions and low temperatures, in order to preserve the native structure. The protocol also achieved the fractionation of hemicelluloses of relatively high purity enabling for the first time estimates of hemicelluloses fractions not chemically bound to lignin in wood. 2D HSQC NMR was applied to decipher the structure of LCCs and was complemented by thioacidolysis-GC MS techniques. The carbohydrates linked to lignin in LCC are hemicelluloses, mainly arabinoglucuronoxylan (AGX) and galactoglucomannan (GGM). Benzylether (BE) and phenyl glycosidic (PG) linkages were detected. Significant structural differences in the lignin part of LCCs are also reported. The novelty of this work is that we report the first quantitative pH neutral protocol for LCC fractionation and detailed chemical analyses unveil important structural differences of relevance to fundamental knowledge in lignin polymerization and wood-based biorefineries.

  • 12.
    Martinez-Abad, Antonio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. AlbaNova University Centre.
    Giummarella, Nicola
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed)
    Abstract [en]

    Hardwoods constitute an essential renewable resource for the production of platform chemicals and bio-based materials. A method for the sequential extraction of hemicelluloses and lignin from hardwoods is proposed using subcritical water in buffered conditions without prior delignification. This allows the cascade isolation of mannan, xylan and lignin-carbohydrate complexes based on their extractability and recalcitrance in birch lignocellulose. The time evolution of the extraction was monitored in terms of composition, oligomeric mass profiling and sequencing of the hemicelluloses, and molecular structure of the lignin and lignin-carbohydrate complexes (LCCs) by heteronuclear single quantum coherence nuclear magnetic resonance (2D HSQC NMR). The minor mannan and pectin populations are easily extractable at short times (<5 min), whereas the major glucuronoxylan (GX) becomes enriched at moderate extraction times. Longer extraction times results in major hydrolysis exhibiting GX fractions with tighter glucuronation spacing and lignin enrichment. The pattern of acetylation and glucuronation in GX is correlated with extractability and with connectivity with lignin through LCCs. This interconnected molecular heterogeneity of hemicelluloses and lignin has important implications for their supramolecular assembly and therefore determines the recalcitrance of hardwood lignocellulosic biomass.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf