Change search
Refine search result
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bhattacharya, Prosun
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Nath, B.
    Chatterjee, D.
    Mukherjee, A.
    Tubewell platform color: Assessment of a tool for rapid screening of arsenic and manganese in well water2012In: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment, Taylor & Francis Group, 2012, p. 515-518Conference paper (Refereed)
    Abstract [en]

    This study attempts to make a statistical comparison between Tubewell (TW) platform color and the level of Arsenic (As) and Manganese (Mn) concentration in groundwater abstracted from a set of 423 Tubewells (TWs) in Chakdaha Block of Nadia District, West Bengal, India to validate platform color as a screening tool for both As and Mn in groundwater. The results indicate that water extracted from TWs with black colored platform in 93% cases was safe for As while water extracted from TWs with red colored platform is contaminated with As with 38% certainty, compared to drinking water standard of India (50 ÎŒg/L). At this standard the respective efficiency, sensitivity and specificity of the tool are 65, 85 and 59%. If WHO drinking water guideline (10 ÎŒg/L) is considered, the certainty increases to 73% and 84% respectively for black and red colored platform with respective efficiency, sensitivity and specificity values of 79, 77 and 81%. Furthermore, the black colored platform with 78% certainty indicates well water is enriched with Manganese (Mn), while red colored platform indicates water is low in Mn with 64% certainty evaluated against Indian national standard of 300 ÎŒg/L. This study demonstrates that platform color can be potentially used as an initial screening tool for As and Mn, to assess the safe water acess for drinking purposes.

  • 2.
    Bhattacharya, Prosun
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology. Royal Inst Technol KTH, Dept Land & Water Resources Engn, KTH Int Groundwater Arsen Res Grp, Stockholm, Sweden..
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology. Royal Inst Technol KTH, Dept Land & Water Resources Engn, KTH Int Groundwater Arsen Res Grp, Stockholm, Sweden..
    Nath, B.
    Univ Sydney, Sch Geosci, Sydney, NSW, Australia..
    Chatterjee, D.
    Univ Kalyani, Dept Chem, Kalyani, W Bengal, India..
    Mukherjee, A.
    Indian Inst Technol, Dept Geol & Geophys, Kharagpur, W Bengal, India..
    Tubewell platform color: Assessment of a tool for rapid screening of arsenic and manganese in well water2012In: UNDERSTANDING THE GEOLOGICAL AND MEDICAL INTERFACE OF ARSENIC, AS 2012 / [ed] Ng, JC Noller, BN Naidu, R Bundschuh, J Bhattacharya, P, CRC PRESS-TAYLOR & FRANCIS GROUP , 2012, p. 515-518Conference paper (Refereed)
    Abstract [en]

    This study attempts to make a statistical comparison between Tubewell (TW) platform color and the level of Arsenic (As) and Manganese (Mn) concentration in groundwater abstracted from a set of 423 Tubewells (TWs) in Chakdaha Block of Nadia District, West Bengal, India to validate platform color as a screening tool for both As and Mn in groundwater. The results indicate that water extracted from TWs with black colored platform in 93% cases was safe for As while water extracted from TWs with red colored platform is contaminated with As with 38% certainty, compared to drinking water standard of India (50 mu g/L). At this standard the respective efficiency, sensitivity and specificity of the tool are 65, 85 and 59%. If WHO drinking water guideline (10 mu g/L) is considered, the certainty increases to 73% and 84% respectively for black and red colored platform with respective efficiency, sensitivity and specificity values of 79, 77 and 81%. Furthermore, the black colored platform with 78% certainty indicates well water is enriched with Manganese (Mn), while red colored platform indicates water is low in Mn with 64% certainty evaluated against Indian national standard of 300 mu g/L. This study demonstrates that platform color can be potentially used as an initial screening tool for As and Mn, to assess the safe water acess for drinking purposes.

  • 3.
    Bhattacharya, Prosun
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Nath, Bibhas
    Chatterjee, Debashis
    Department of Chemistry, University of Kalyani, Kalyani-741 235, India.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Majumder, Santanu A.
    Bhowmick, Subhamoy K.
    Ramanathan, AL L.
    Natural Arsenic in Coastal Groundwaters in the Bengal Delta Region in West Bengal, India2010In: Management and Sustainable Development of Coastal Zone Environments / [ed] Ramanathan, A.; Bhattacharya, P.; Dittmar, T.; Prasad, B.; Neupane, B., Springer Netherlands, 2010, p. 146-160Chapter in book (Refereed)
    Abstract [en]

    Bengal Delta region is currently confronted with largest groundwater arsenic calamity in history of human kind (BGS-DPHE, 2001; Mukherjee and Bhattacharya, 2001; Bhattacharya et al., 2002a; McArthur et al., 2001; Smedley and Kinniburgh, 2002; Mukherjee et al., 2006; Nath et al., 2005, 2007, 2008). Concentrations of arsenic in drinking water wells in the region often exceed the WHO drinking water guideline value (10 μg L-1) and the national safe limit of both India and Bangladesh for arsenic in drinking water (Smedley and Kinniburgh, 2002; RGNDWM, 2002; CGWB, 1999; Bhattacharya et al., 2002a). About one third (35 million) population inhabiting in this region (West Bengal and Bangladesh), currently at risk of long-term arsenic exposure (Bhattacharya et al., 2001; RGNDWM, 2002; Chakraborti et al., 2004; Kapaj et al., 2006), are being diagnosed with a wide spectrum of adverse health impacts including skin disorders such as hyper/hypo-pigmentation, keratosis and melanosis and are also in hot-spot areas of BDP which is reflected in a rise in the number of cancer cases (Guha Mazumdar et al., 1988). The distribution pattern of arsenic occurrence in BDP is patchy and there are numerous hotspots of arsenic contamination in the semi-confined shallow Holocene aquifer (Bhattacharya et al., 1997; Smedley and Kinniburgh, 2002). The scale of the problem is serious both in terms of hotspots and geographic area coverage (173 × 10 3 km2, eastern part of Hoogly-Bhagirathi/Western part of Ganga-Padma-lower Meghna flood plains).

  • 4. Bhowmick, S.
    et al.
    Nath, B.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Majumder, S.
    Mondal, P.
    Chakraborty, S.
    Nriagu, J.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Iglesias, M.
    Roman-Ross, G.
    Guha Mazumder, D.
    Bundschuh, J.
    Chatterjee, D.
    Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences2013In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 262, p. 915-923Article in journal (Refereed)
    Abstract [en]

    A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n=90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh=-185 to -86mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100m) and deeper (>100m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca2+HCO3 - type water, whereas Na+ and Cl- enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4 2- and high DOC, PO4 3- and HCO3 - concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters.

  • 5. Bhowmick, S.
    et al.
    Nath, B.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Chakraborty, S.
    Chatterjee, D.
    Groundwater arsenic chemistry and redox process comparison in three physiographic settings of deltaic West Bengal, India2012In: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment, 2012, p. 54-56Conference paper (Refereed)
    Abstract [en]

    A comparative hydrogeochemical study was carried out in West Bengal covering three physiographic settings of deltaic floodplains to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. The low redox potential (Eh = -185 to -86 mV) and the presence of low sulfate (SO 4 2-) and high Dissolved Organic Carbon (DOC), phosphate (PO 4 3-) and bicarbonate) (HCO 3 -) concentrations in groundwater signifies microbially mediated redox processes controlling As release in the aquifer. The release of As is influenced by both geogenic (i.e. geomorphology and/or landform features) and anthropogenic (i.e. unsewered sanitation and domestic wastes) factors.

  • 6. Bhowmick, Subhamoy
    et al.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630).
    Kundu, Amit Kumar
    Saha, Debasree
    Iglesias, Monica
    Nriagu, Jerome
    Mazumder, Debendra Nath Guha
    Roman-Ross, Gabriela
    Chatterjee, Debashis
    Is Saliva a Potential Biomarker of Arsenic Exposure?: A Case-Control Study in West Bengal, India2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 7, p. 3326-3332Article in journal (Refereed)
    Abstract [en]

    Saliva is a biological fluid that has not been used extensively as a biomonitoring tool in epidemiological studies. This study presents the arsenic (As) concentrations in saliva and urine samples collected from populations of West Bengal, India who had been previously exposed to high As levels in their drinking water. We found a significant (p < 0.05) association between the Log transformed Daily Ingestion of As (mu g day(-1)) and the As concentration in saliva (r = 0.68). Additionally, As concentration of saliva and urine also had a significant positive correlation (r = 0.60, p < 0.05). Male participants, smokers, and cases of skin lesion were independently and significantly associated with an increase in salivary As. Thus our findings show that saliva is a useful biomarker of As exposure in the study population. The study also advocates that measurement of the forms of As in saliva may additionally provide insight into the internal dose and any individual differences in susceptibility to As exposure.

  • 7. Bhowmick, Subhamoy
    et al.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Nriagu, Jerome
    Mazumder, Debendra Nath Guha
    Roman-Ross, Gabriela
    Chatterjee, Debashis
    Iglesias, Monica
    Speciation of Arsenic in Saliva Samples from a Population of West Bengal, India2014In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 48, no 12, p. 6973-6980Article in journal (Refereed)
    Abstract [en]

    Saliva, an easily accessible biofluid, is validated as biomarker of arsenic (As) exposure in several villages of West Bengal, India. Pentavalent arsenic [As(V)] was found to be the predominant species in saliva, with the amount of inorganic As [As(V) and trivalent form, As(III)] being more than half of the total As in the samples. Significant association was found between total daily ingestion of As and As(V) (r = 0.59; p = 0.000), As(III) (r = 0.60; p = 0.000), dimethylarsinous acid (DMA(V)) (r = 0.40; p = 0.000), and monomethylarsonous acid (MMA(V)) (r = 0.44; p = 0.000), implying that these species have mainly been derived from the methylation of the inorganic As in the water that study participants drank and the food they ate. Analysis of confounding effects of age, sex, smoking, body mass index and the prevalence of skin lesion suggests that women and controls with no skin lesion had a higher capacity to methylate the ingested As compared to the rest of the population. Thus, our study demonstrates that As species in saliva can be an useful tool to predict the individual susceptibility where higher As exposure and a lower methylation capacity are implicated in the development of As-induced health effects.

  • 8.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Nath, B.
    Mukherjee, A.
    Kundu, A. K.
    Mandal, U.
    Chatterjee, D.
    Potentiality of shallow brown sand aquifers as an alternative safe drinking water source in Bengal Basin2012In: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment, 2012, p. 67-68Conference paper (Refereed)
    Abstract [en]

    The present study investigated the regional distribution of brown sand aquifers (BSA) as well as their hydrogeochemical contrast to grey sand aquifers (GSA). The data indicated that in BSA redox status is limited to the Mn oxides reduction stage, while in GSA, Fe oxides reduction to SO 4 2- reduction processes are prevalent. Though, the concentration of dissolved As was very low (&lt;10 ÎŒg/L) in BSA, the concentration of Mn was very high (&gt;400 ÎŒg/L). Whereas in GSA, the enrichment patterns of As and Mn were opposite to that of BSA. This study suggests that underlying health risk of Mn in drinking water needs to be addressed more rigorously before advocating for mass scale exploitation of BSA as an alternative drinking water source despite of significantly low As concentration in groundwater.

  • 9.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Neidhardt, H.
    Karlsruhe Institute of Technology, Germany.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Kundu, A.K.
    University of Kalyani, India.
    Chatterjee, Debashis
    University of Kalyani, India.
    Berner, Z.
    Karlsruhe Institute of Technology, Germany.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Surface complexation modeling of temporal variability of arsenic in groundwater: Estimating the role of competing ions in the mobilization processes2013Conference paper (Refereed)
    Abstract [en]

    This study investigates the relative roles of different competing ions on the mobilization of arsenic (As) by surface complexation modeling of As rich groundwater in the aquifer of Bengal Basin. Two sets of piezometers, installed at different depths of the shallow aquifer (<50 m), have been monitored for As and other relevant hydrogeochemical parameters over a period of 20 months. The potentiality of two different surface complexation models (SCM), developed for ferrihydrite and goethite has been explored to account for the observed temporal variation in As(III) and As(V) concentration in groundwater. The SCM for ferrihydrite appears as the better predictor for the observed variation in both As(III) and As(V) concentration. It is estimated that among the competing ions PO43- is the major competitor of As(III) and As(V) adsorption into Fe oxyhydroxide and competing ability of the ions decreases as PO43- >> Fe(II) > H4SiO4 = HCO3-. The result of sensitivity test indicates that the competition of PO43- with As for the adsorption sites might already reach nearly to the stage of maxima. It is also shown that a slight increase or decrease in pH can have overwhelming effect on the mobility of As(III) and As(V) by changing their concentration oppositely. It appears that only the reductive dissolution of Fe oxyhydroxide cannot explain the observed high As concentration in the groundwater of Bengal Basin. In absence of potential competition for the adsorption sites, As released due to reductive dissolution of Fe oxyhydroxide would have been re-adsorbed into the residual Fe phases. This study suggests that the reductive dissolution of Fe oxyhydroxide followed by competitive ion exchange with the aquifer sediment is the processes conducive for As enrichment in groundwater of the sedimentary aquifers.

  • 10.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Neidhardt, Harald
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Kundu, Amit K.
    Chatterjee, Debashis
    Berner, Zsolt
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling2014In: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 55, p. 30-39Article in journal (Refereed)
    Abstract [en]

    This study assesses the role of competing ions in the mobilization of arsenic (As) by surface complexation modeling of the temporal variability of As in groundwater. The potential use of two different surface complexation models (SCMs), developed for ferrihydrite and goethite, has been explored to account for the temporal variation of As(III) and As(V) concentration, monitored in shallow groundwater of Bengal Basin over a period of 20 months. The SCM for ferrihydrite appears as the better predictor of the observed variation in both As(III) and As(V) concentrations in the study sites. It is estimated that among the competing ions, PO43- is the major competitor of As(III) and As(V) adsorption onto Fe oxyhydroxide, and the competition ability decreases in the order PO43- >> Fe(II) > H4SiO4 = HCO- (3.) It is further revealed that a small change in pH can also have a significant effect on the mobility of As(III) and As(V) in the aquifers. A decrease in pH increases the concentration of As(III), whereas it decreases the As(V) concentration and vice versa. The present study suggests that the reductive dissolution of Fe oxyhydroxide alone cannot explain the observed high As concentration in groundwater of the Bengal Basin. This study supports the view that the reductive dissolution of Fe oxyhydroxide followed by competitive sorption reactions with the aquifer sediment is the processes responsible for As enrichment in groundwater.

  • 11.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Neidhardt, Harald
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Kundu, Amit K.
    Chatterjee, Debashis
    Berner, Zsolt
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Role of competing ions on the mobilization of arsenic in groundwater of sedimentary aquifers: insight from surface complexation modelingManuscript (preprint) (Other academic)
  • 12.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. University of Kalyani.
    Gustafsson, Jon Petter
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. Swedish University of Agricultural Sciences.
    Neidhardt, Harald
    Karlsruhe Institute of Technology, Germany.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. University of Kalyani.
    Kundu, Amit Kumar
    University of Kalyani, India.
    Chatterjee, Debashis
    University of Kalyani, India.
    Berner, Zsolt
    Karlsruhe Institute of Technology, Germany.
    Bhattacharya, Prosun
    University of Kalyani.
    Estimating the role of competing ions on the arsenic mobilization processes in the aquifers of Bengal Basin by surface complexation modeling2013Conference paper (Refereed)
    Abstract [en]

    This study investigates the relative roles of the different competing ions on the arsenic (As) mobilization in the sedimentary aquifers of Bengal basin by surface complexation modeling of the temporal varaibility of As in shallow (<50 m) groundwater. Two sets of piezometers (2×5 = 10), installed at the two sites with relatively contrasting dissolved As concentration in groundwater, were monitored bi-weekly for As and other hydrogeochemical parameters over a period of 20 months. The estimation of the standard deviation (SD) for As(III) reflects strong temporal variation (SD ≥10 μg/L) in all the piezometers of two sites over the monitoring period. Particularly, the variation is more prominent in the shallowest part of the aquifer, where the site specific cyclic trends are evident. While, As(V) shows significant temporal variation in the piezometers of high As site only and no specific trend is reflected in the variation.

    Two different surface complexation models (SCMs), developed for ferrihydrite and goethite have been explored to account for the observed temporal variation in As(III) and As(V) concentrations. The SCM for ferrihydrite has provided the better estimation for both As(III) and As(V) variations.

    Among the different competing ions, PO43- appears as the major competitor of As(III) and As(V) adsorption onto ferrihydrite and the competition ability decreases in the order PO43- >> Fe(II) > H4SiO4 = HCO3-. It is further revealed that a small decrease in pH significantly increases the concentration of As(III) and decreases the As(V) concentration and vice versa. The present study suggests that the reductive dissolution of Fe oxyhydroxides alone cannot explain the observed high As concentration in groundwater of the sedimentary aquifers. Perhaps, the reductive dissolution of Fe oxyhydroxides followed by competitive sorption reactions with the aquifer sediment is the processes conducive for As enrichment in the groundwater of Bengal basin.

  • 13.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Nath, Bibhash
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Kundu, Amit K.
    Mandal, Ujjal
    Mukherjee, Abhijit
    Chatterjee, Debashis
    Mörth, Carl-Magnus
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: Consequences for sustainable drinking water supply2012In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 431, p. 402-412Article in journal (Refereed)
    Abstract [en]

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (<70 m) over an area of 100 km(2) in Chakdaha Block of Nadia district, West Bengal, India. The results indicate that despite close similarity in major ion composition, the redox condition is markedly different in groundwater of the two studied aquifers. The redox condition in the BSA is delineated to be Mn oxy-hydroxide reducing, not sufficiently lowered for As mobilization into groundwater. In contrast, the enrichments of NH4+, PO43-, Fe and As along with lower Eh in groundwater of GSA reflect reductive dis-solution of Fe oxy-hydroxide coupled to microbially mediated oxidation of organic matter as the prevailing redox process causing As mobilization into groundwater of this aquifer type. In some portions of GSA the redox status even has reached to the stage of SO42- reduction, which to some extent might sequester dissolved As from groundwater by co-precipitation with authigenic pyrite. Despite having low concentration of As in groundwater of the BSA the concentration of Mn often exceeds the drinking water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply.

  • 14.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Nath, Bibhash
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Kundu, Arnit K.
    Mandal, Ujja
    Mukherjee, Abhijit
    Chatterjee, Debashis
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Testing tubewell platform color as a rapid screening tool for arsenic and manganese in drinking water wells2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, ISSN 0013-936X, Vol. 46, p. 434-440Article in journal (Refereed)
    Abstract [en]

    A low-cost rapid screening tool for arsenic (As) and manganese (Mn) in groundwater is urgently needed to formulate mitigation policies for sustainable drinking water supply. This study attempts to make statistical comparison between tubewell (TW)platform color and the level of As and Mn concentration in groundwater extracted from the respective TW (n = 423), to validate platform color as a screening tool for As andMnin groundwater. The result shows that a black colored platform with 73% certainty indicates that well water is safe fromAs, while with 84% certainty a red colored platform indicates that well water is enriched with As, compared to WHO drinking waterguideline of 10 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 79%, 77%, and 81%, respectively.However, the certainty values become 93% and 38%, respectively, for black and redcolored platforms at 50 μg/L, the drinking water standards for India and Bangladesh. The respective efficiency, sensitivity, and specificity are 65%, 85%, and 59%. Similarly for Mn, black and red colored platform with 78% and 64% certainty, respectively, indicates that wellwater is either enriched or free from Mn at the Indian national drinking water standard of 300 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 71%, 67%, and 76%, respectively. Thus, this study demonstrates that TWplatform color can bepotentially used as an initial screening tool for identifying TWs with elevated dissolved As andMn, tomake further rigorous groundwater testing more intensive and implement mitigation options for safe drinking water supplies.

  • 15.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Neidhardt, Harald
    Kundu, Amit K.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Chatterjee, Debashis
    Berner, Zsolt
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Spatial, vertical and temporal variation of arsenic in the shallo aquifers of Bengal Basin: Controlling geochemical processesManuscript (preprint) (Other academic)
  • 16.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Kalyani, India .
    Neidhardt, Harald
    Kundu, Amit K.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Kalyani, India .
    Chatterjee, Debashis
    Berner, Zsolt
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Spatial, vertical and temporal variation of arsenic in shallow aquifers of the Bengal Basin: Controlling geochemical processes2014In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 387, p. 157-169Article in journal (Refereed)
    Abstract [en]

    A detailed understanding of the geochemical processes that regulate the spatial, temporal and vertical variation of dissolved arsenic (As) in shallow aquifers (<50 m) is a prerequisite for sustainable drinking water management in the Bengal Basin. The present study conducted at Chakdaha Block of the Nadia District, West Bengal, India, combined a high resolution hydrogeochemical monitoring study over 20 months from two sets of piezometers (2 x 5) to the sediment geochemistry at areas with high (average:146 mu g/L, n = 5) and relatively low (average: 53.3 mu g/L, n = 10) dissolved As concentrations in groundwater. The determination of the isotopic composition of delta H-2 and delta O-18 in groundwater of the two sites indicated the recharge of evaporative surface water to the aquifer. The concentrations of major aqueous solutes (Ca2+, Mg2+, Na+, K+, HCO3- and Cl-) and electrical conductivity were considerably higher in wells at the high As site compared to the low As site. Additionally, at the high As site, the major ions, Fe, SO42-, electrical conductivity, delta H-2 and delta O-18 showed markedly greater enrichment in the shallowest part (<24 m) of the aquifer compared to the deeper part, reflecting vertical layering of groundwater composition within the aquifer. The oxidation of pyrites has been attributed to the high rate of mineral dissolution resulting in such greater enrichments in this part of the aquifer. In addition, the anthropogenic input with recharge water possibly increased the concentrations of Cl- in this part of the aquifer. The vertical layering of groundwater was absent in the aquifer at the low As site. The absence of such layering and relatively low major ion concentrations and electrical conductivity could be linked to the enhanced aquifer flushing and decreased water-ediment interactions influenced by local-scale groundwater abstraction. The seasonal variations of As concentrations in groundwater were observed only in the shallowest part of the aquifers (<30 m). Furthermore, the As concentrations in groundwater at the uppermost part of the shallow aquifers (<21 m) increased continuously over the monitoring period at both sites. This study supports the view that the reductive dissolution of Fe oxyhydroxides coupled with competitive PO43- sorption reactions in the aquifer sediment enriches As in groundwater of the Bengal Basin. However, the additional Fe released by the weathering of silicate minerals, especially biotite, or the precipitation of Fe as secondary mineral phases such as siderite, vivianite and acid volatile sulfides may result in the decoupling of As and Fe enrichment in groundwater. The redox zonation within the aquifer possibly regulates the vertical distribution of As in the groundwater.

  • 17.
    Chatterjee, D.
    et al.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Heritage Inst Technol, Dept Chem Technol, Kolkata 700107, India..
    Nath, B.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Univ Sydney, Sch Geosci, Sydney, NSW 2006, Australia..
    Chakraborty, S.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Kanchrapara Coll, Dept Chem, Kanchrapara 743145, India..
    Majumder, S.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Univ Girona, Dept Chem, Girona 17071, Spain..
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630). Univ Kalyani, Dept Chem, Nadia 741235, India..
    Bhomick, S.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Univ Girona, Dept Chem, Girona 17071, Spain..
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630). Univ Kalyani, Dept Chem, Nadia 741235, India..
    Mondal, P.
    Univ Kalyani, Dept Chem, Nadia 741235, India.;Katholieke Univ Leuven, Dept Chem Engn, B-3001 Heverlee, Belgium..
    Kundu, A.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Saha, D.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Barman, S.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Biswas, U.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Saha, I.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Das, A.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Sarkar, S.
    Univ Kalyani, Dept Chem, Nadia 741235, India..
    Groundwater arsenic in the fluvial Bengal plains: geochemistry and mitigation2013In: PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SYMPOSIUM ON WATER-ROCK INTERACTION, WRI 14 / [ed] Hellmann, R Pitsch, H, ELSEVIER SCIENCE BV , 2013, p. 143-146Conference paper (Refereed)
    Abstract [en]

    The water quality and chemistry of the groundwater of the fluvial Bengal plains have been investigated. It has been found that shallow aquifers (< 50 m bgl) are contaminated in a few pockets, surrounded by areas with low arsenic (As)/As-free groundwater, while the deeper aquifer (> 100 m bgl) is generally free from As (< 10 mu g/L). It also reveals that multiple As mobilization processes are occurring simultaneously, rather than any single geochemical process. An attempt has been made to demonstrate the degree of As heterogeneity with groundwater quality, and this has been followed by a few local conditions. The study further suggests that the As distribution (spatio-vertical) helps to identify safe shallow aquifers, and several signatures (colour of the sediments /land use pattern/ geomorphological features /local recharge events) are apparent that can be useful for formulating long-term mitigation options.

  • 18.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Arsenic Exposure Risk from Rice and Other Dietry Components in Rural Bengal2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This study investigates the risk of arsenic (As) exposure from staple diet to the communities in rural Bengal, even when they have been supplied with As safe drinking water. The results indicate that average accumulation of As in rice grain increases with decrease of grain size [extra-long slender (ELS): 0.04 mg kg-1; long slender (LS): 0.10 mg kg-1; medium slender (MS): 0.16 mg kg-1 and short bold (SB): 0.33 mg kg-1], however people living in the rural villages mostly prefer brown colored SB type of rice because of its lower cost. Among the vegetables generally consumed in rural villages, the accumulation of As is highest in the leafy type of vegetables (0.21 mg kg-1), compared to non-leafy (0.07 mg kg-1) and root  vegetables (0.10 mg kg-1). Arsenic predominantly accumulates in rice (>90%) and vegetables (almost 100%) in inorganic species [As(III & V)]. The estimates of exposure via dietary and drinking water routes show that when people are consuming water with As concentration <10 μg L-1, the total daily intake of inorganic As (TDI-iAs) exceeds the previous provisional tolerable daily intake (PTDI) value of 2.1 μg day-1 kg-1 BW, recommended by World Health Organization (WHO) in 35% of the cases due to consumption of rice. Considerably high concentration of As in urine and saliva despite drinking of As safe water (<10 μg L-1) further supports that dietary intake of As, mainly through consumption of rice could be alternative pathway of As exposure among the population. When the level of As concentration in drinking water is above 10 μg L-1, the TDI-iAs exceeds the previous  PTDI for all the participants. These results imply that when rice consumption is a significant contributor to the TDI-iAs, supplying water with As concentration at current national drinking water standard for India and Bangladesh (50 μg L-1) would place many people above the safety threshold of PTDI. When As concentration in drinking water exceeds 50 μg L-1 As exposure through drinking water largely predominates over the exposure through dietary intake. It is found that the consumption of vegetables in rural Bengal does not pose  significant health threat to the population independently. It is also revealed that cooking of rice with high volume of As safe (<10 μg L-1) water can decrease both total and inorganic As content in cooked rice. However, the assessment of As exposure risk indicates that despite such lowering in As concentrations, still consumption of cooked rice is a significant pathway of As exposure to the population in rural Bengal. This study suggests that any effort to mitigate the As exposure of the villagers in Bengal must consider the risk of As exposure from rice consumption together with drinking water.

  • 19.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Bhowmick, S.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Chatterjee, D.
    Nriagu, J.
    Guha Mazumder, D. N.
    Šlejkovec, Z.
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Risk of arsenic exposure from drinking water and dietary components: Implications for risk management in rural Bengal2013In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 2, p. 1120-1127Article in journal (Refereed)
    Abstract [en]

    This study investigates the risk of arsenic (As) exposure to the communities in rural Bengal, even when they have been supplied with As safe drinking water. The estimates of exposure via dietary and drinking water routes show that, when people are consuming water with an As concentration of less than 10 μg L-1, the total daily intake of inorganic As (TDI-iAs) exceeds the previous provisional tolerable daily intake (PTDI) value of 2.1 μg day-1 kg-1 BW, recommended by the World Health Organization (WHO) in 35% of the cases due to consumption of rice. When the level of As concentration in drinking water is above 10 μg L-1, the TDI-iAs exceeds the previous PTDI for all the participants. These results imply that, when rice consumption is a significant contributor to the TDI-iAs, supplying water with an As concentration at the current national drinking water standard for India and Bangladesh would place many people above the safety threshold of PTDI. We also found that the consumption of vegetables in rural Bengal does not pose a significant health threat to the population independently. This study suggests that any effort to mitigate the As exposure of the villagers in Bengal must consider the risk of As exposure from rice consumption together with drinking water.

  • 20.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Bhowmick, Subhamoy
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Mandal, Ujjal
    Nriagu, Jerome
    Mazumdar, Debendra Nath Guha
    Chatterjee, Debashis
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Environmental Geochemistry and Ecotechnology.
    Consumption of Brown Rice: A Potential Pathway for Arsenic Exposure in Rural Bengal2012In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 46, no 7, p. 4142-4148Article in journal (Refereed)
    Abstract [en]

    This study assesses the arsenic (As) accumulation in different varieties of rice grain, that people in rural Bengal mostly prefer for daily consumption, to estimate the potential risk of dietary As exposure through rice intake. The rice samples have been classified according to their average length (L) and L to breadth (B) ratio into four categories, such as short-bold (SB), medium-slender (MS), long-slender (LS), and extra-long slender (ELS). The brown colored rice samples fall into the SB, MS, or LS categories; while all Indian Basmati (white colored) are classified as ELS. The study indicates that the average accumulation of As in rice grain increases with a decrease of grain size (ELS: 0.04; LS: 0.10; MS: 0.16; and SB: 0.33 mg kg(-1)), however people living in the rural villages mostly prefer brown colored SB type of rice because of its lower cost. For the participants consuming SB type of brown rice, the total daily intake of inorganic As (TDI-iAs) in 29% of the cases exceeds the previous WHO recommended provisional tolerable daily intake value (2.1 mu g day(-1) kg(-1) BW), and in more than 90% of cases, the As content in the drinking water equivalent to the inorganic As intake from rice consumption (C-W,C-eqv) exceeds the WHO drinking water guideline of 10 mu g L-1. This study further demonstrates that participants in age groups 18-30 and 51-65 yrs are the most vulnerable to the potential health threat of dietary As exposure compared to participants of age group 31-50 yrs, because of higher amounts of brown rice consumption patterns and lower BMI.

  • 21.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Bhowmick, S.
    Mandal, U.
    Chatterjee, D.
    Nriagu, J.
    Arsenic exposure and health risk from consumption of brown rice in rural Bengal, India2012In: Understanding the Geological and Medical Interface of Arsenic, As 2012 - 4th International Congress: Arsenic in the Environment, Taylor & Francis Group, 2012, p. 505-507Conference paper (Refereed)
    Abstract [en]

    This study investigates the Arsenic (As) concentration in different types of brown rice grain and assesses As exposure and non-cancer health risk from rice consumption. Daily Intake (DI rice) and Hazard Quotient (HQ) from rice were calculated for the people who are consuming these type of rice. Daily intake value of As from rice was compared with previous WHO recommended Provisional Tolerable Daily Intake value (PTDI) of 2.1 ÎŒg/day/kg bw to understand which kind of rice may pose potential health risk. Hazard quotient (HQ) was determined to understand the potential non-cancer health risk of the people who are consuming these rice. This study indicates that for SB brown rice consumer in 29% cases DI rice exceeds the previous PTDI value and 100% cases HQ value exceeds 1.

  • 22.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Bhowmick, S.
    University of Kalyani, India.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Nriagu, Jerome O.
    University of Michigan, USA.
    Guha Mazumder, D.N.
    DNGM Research Foundation, India.
    Slejkovec, Z.
    Josef Stefan Institute, Ljubljana, Slovenia.
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Chatterjee, Debashis
    University of Kalyani, India.
    Assessment of arsenic exposure risk from drinking water and dietary component in West Bengal, India2013Conference paper (Refereed)
    Abstract [en]

    The current status of arsenic (As) exposure risk from drinking water and different dietary components in rural Bengal has been compared in the present study. This study shows that the consumption of rice is the major source of dietary intake of inorganic As among the population when they are drinking As safe water. Consumption of vegetables does not pose a significant health threat to the population independently; it nevertheless can increase the total daily intake of inorganic As (TDI-iAs). The results indicate that when people are drinking water with As concentration <10 μg L-1, in 35% of the cases the total daily intake of inorganic As (TDI-iAs) exceeds the previous provisional tolerable daily intake (PTDI) value of 2.1 μg day-1 kg-1 BW, recommended by World Health Organization (WHO). It should be mention here that the joint FAO/WHO expert committee on food additives (JECFA) has withdrawn the previous PTDI value in their 72nd meeting because PTDI value was in the lower range of bench mark dose level for 0.5% increased of lung cancer. However, Codex Committee on Contaminants in Foods (CCCF) has argued that TDI-iAs below BMDL0.5 does not indicates that there is no risk and this motivated us to compare TDI-iAs of the participants with the previous PTDI value of 2.1 μg day-1 kg-1 bw. At the As concentration level <10 μg L-1in drinking water, the consumption of rice is the major source of daily intake of inorganic As. When As concentration in drinking water exceeds 10 μg L-1, drinking water and rice consumption contributes almost equally (~40% from rice, ~50% from drinking water, and 10% from vegetables according to median DI-iAs) and TDI-iAs exceeds previous PTDI for all the participants. The relative contribution of daily intake of iAs from drinking water (DI-iAs-DW) largely predominates over daily intake of iAs from rice (DI-iAs-R) when As concentration in drinking water exceeds 50 μg L-1. This study implies that when consumption of rice contributes significantly to the TDI-iAs, supply of drinking water to the population considering national drinking water standard of India and Bangladesh as a safety measure for As might compound the As exposure largely by increasing TDI-iAs. Thus it can be concluded that any effort to mitigate the As poisoning of rural villagers in Bengal must look beyond the drinking water and consider all the routes of exposure.

  • 23.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Slejkovec, Zdenka
    Chatterjee, Debashis
    Nriagu, Jerome
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Arsenic species in raw and cooked rice: Implications for human health in rural Bengal2014In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 497, p. 200-208Article in journal (Refereed)
    Abstract [en]

    This study compares the concentrations of total and different species of arsenic (As) in 29 pairs of raw and cooked rice samples collected from households in an area of West Bengal affected by endemic arsenicism. The aim is to investigate the effects of indigenous cooking practice of the rural villagers on As accumulation and speciation in cooked rice. It is found that inorganic As is the predominant species in both raw (93.8%) and cooked rice (88.1%). Cooking of rice with water low in As (<10 mu g L-1) significantly decreases the total and inorganic As content in cooked rice compared to raw rice. Arsenic concentration is mainly decreased during boiling of rice grains with excess water. Washing of rice grains with low As water has negligible effect on grain As concentration. The study suggests that rice cooking with low As water by the villagers is a beneficial risk reduction strategy. Despite reductions in As content in cooked rice because of cooking with low As water, the consumption of cooked rice represents a significant health threat (in terms of chronic As toxicity) to the study population.

  • 24.
    Halder, Dipti
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Biswas, Ashis
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Šlejkovec, Zdenka
    Chatterjee, Debashis
    Nriagu, Jerome
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
    Variation of arsenic species in raw and cooked rice: Implications for human health in rural BengalManuscript (preprint) (Other academic)
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf