Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lövqvist, Lisa
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Towards frost damage prediction in asphaltic pavements2019Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Roads are subjected to mechanical loads from the traffic as well as deteriorating mechanisms originating from the surrounding environment and climate. The damage arising is particularly severe during the winter season, when for example raveling, pot holes and cracks can emerge on the surfaces of asphaltic roads. These winter related damages are difficult to characterize and predict, partly due to the complexity of the asphalt material and partly since they cannot be linked to one single phenomenon but several, such as the (long term) existence of moisture, frost damage and frost heave, low temperature cracking and the embrittlement of the mastic at low temperatures. Further adding to the complexity is the combination of these phenomena which may accelerate the emergence and evolution of the damage mechanisms. This licentiate research project is mainly focusing on the emergence and development of frost damage in the asphalt layer but will include the effect of other damage mechanisms in its continuation. The goal of the project is to develop a multiscale model able to predict the damage development in an asphalt pavement during a desired period of time, to enhance maintenance predictions as well as pavement design choices. This licentiate thesis is the first part of this project and aims to lay the foundation of the multiscale model. To achieve this, a micromechanical model of frost damage in asphalt mixtures has been developed. This model couples the moisture and mechanical damage happening on the short and long term, caused by the infiltration of moisture and the expansion of water turning into ice during temperature drops. Both possible adhesive damage in the mastic-aggregate interface and cohesive damage in the mastic is included. In addition to the developed micromechanical model, this thesis presents the overall concept for the formulation of the multiscale model as well as discusses about its motivations and advantages.

  • 2.
    Lövqvist, Lisa
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    A Coupled Micromechanical Model of Frost Damage in Asphalt2018In: Transportation Research Board 97th Annual Meeting, Washington DC, January 7-11, 2018, 2018Conference paper (Refereed)
    Abstract [en]

    Frost damage in asphalt pavements is an important factor influencing the performance of the pavement. This type of damage occurs during freeze-thaw cycles when ice forms in the air voids, causing microstructural changes and degradation of material properties, thus affecting the performance of the pavement. It is therefore necessary to understand the process of frost damage in order to prevent it. However, experimental testing is often expensive and time consuming and only a limited number of numerical models dealing with the topic exist. In this work, a numerical micromechanical model has been developed that couple the diffusion of moisture in the asphalt to the damage occurring in a freezing and thawing environment. In this paper, the model is presented and applied on an asphalt microstructure obtained by x-ray scanning of a real asphalt sample. The effect of including frost damage is shown by comparing the behavior of a damaged microstructure to the behavior of an undamaged microstructure. It is revealed that the strength of the damaged microstructure reduces to about 50% of the strength of the undamaged microstructure. Furthermore, the coupling of the moisture content in the air voids to the expansion of the air voids is proved to be important since the assumption that all air voids are fully saturated overestimates the decrease in strength. The next step in this research will be to validate the model with laboratory data. A validated model can assist in improving the predictions of frost damage and help in developing better laboratory tests.

  • 3.
    Lövqvist, Lisa
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    A micromechanical model of freeze-thaw damage in asphalt mixturesIn: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268XArticle in journal (Refereed)
    Abstract [en]

    Freeze-thaw damage in asphalt pavements is a complex phenomenon depending on many parameters such as moisture infiltration, temperature and mechanical properties of the asphalt constituents as well as the interface between them. As a first step in creating a comprehensive multiscale model including all of these parameters, a micromechanical model has been developed. This model couples the infiltration of moisture and the associated damage, the expansion caused by the water inside the air voids freezing, and the mechanical damage. The expansion of the air voids is implemented by applying a volumetric expansion in the air voids dependent on the temperature. The cohesive damage in the mastic and adhesive damage in the mastic-aggregate interface are included by implementing an energy based damage model and the cohesive zone model, respectively. To show the capabilities of the model, two different graded microstructures were exposed to 10 freeze-thaw cycles each and their stiffness was evaluated before and after the simulated freeze-thaw cycles. In addition, the sensitivity of the resulting damage to the time the microstructure was exposed to temperatures below zero was evaluated by simulating freeze-thaw cycles with a total time ranging between 10 hours and 14 days. From the analyses it was concluded that the model was capable of capturing the deteriorating effect of an increasing number of freeze-thaw cycles, and was sensitive to the freezing time in the freeze-thaw cycles.    

  • 4.
    Lövqvist, Lisa
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    A micromechanical model of freeze-thaw damage in asphalt mixtures2019In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268XArticle in journal (Refereed)
    Abstract [en]

    Freeze-thaw damage in asphalt pavements is a complex phenomenon dependent on many parameters such as moisture infiltration, temperature and mechanical properties of the asphalt constituents as well as the interface between them. As a first step in creating a comprehensive multiscale model including all of these parameters, a micromechanical model has been developed. This model couples the infiltration of moisture and the associated damage, the expansion caused by the water inside the air voids freezing, and the mechanical damage. The expansion of the air voids is implemented by applying a volumetric expansion in the air voids dependent on the temperature. The cohesive damage in the mastic and adhesive damage in the mastic-aggregate interface are included by implementing an energy-based damage model and the cohesive zone model, respectively. To show the capabilities of the model, the effect of different parameters (the number of freeze-thaw cycles, the gradation of the microstructure, and the freezing time) was investigated through simulations. From the analyses it was concluded that the model was capable of capturing the deteriorating effect of an increasing number of freeze-thaw cycles, and was sensitive to the freezing time in the freeze-thaw cycles.

  • 5.
    Lövqvist, Lisa
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Freeze-thaw damage in asphalt: a set of simplified simulations2018In: Proceedings of Canadian Technical Asphalt Association 63rd Annual Conference / [ed] Stephen Goodman, 2018Conference paper (Refereed)
    Abstract [en]

    Winter damage in pavements, such as potholes, dislodging of stones and structural layer separation, occurs during and after winter seasons. This damage is caused by several processes, such as freezing and thawing action, moisture accumulation, traffic loads and winter maintenance actions, which combined makes winter damage a highly complex phenomenon. To better understand this process and, in the future, being able to predict the damage propagation by modeling, this paper discusses the possibility to separate these actions and phenomena into different cases. The focus in this paper is on the freezing -and thawing damage and how it is affected by different environmental conditions, inspired by real weather data from the City of Luleå in the north of Sweden. To investigate this, a microscale model is utilized. The results from the simulations show an increasing adhesive damage with the number of freeze-thaw cycles while the cohesive damage in the viscoelastic mastic increases is the most severe for a period with several days of freezing temperatures. A discussion of how the separation of winter damage into different cases will contribute to the ultimate goal of a multiscale model is also included.

  • 6.
    Lövqvist, Lisa
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Modeling the evolution of winter damage in an asphalt concrete microstructure2019Conference paper (Refereed)
    Abstract [en]

    Winter damage in asphalt pavements is a complex phenomenon which may cause pothole formation, dislodging of stones and structural layer separation. In order to reduce the winter damage, knowledge about the process in both the pavement and on a microstructural level is required. This paper focuses on modeling the process of damage evolution on a microstructural level in order to identify and understand the different phenomena influencing the degradation process. In this paper the evolution of winter damage in an asphalt concrete microstructure was modeled throughout the course of two winter seasons. The simulations include freezing and thawing cycles as well as additional damage originating from snow plows, both based on real weather data from Luleå in the north of Sweden. The results show a large increase of damage in both the mastic and the aggregate-mastic interface, and thereby also vertical displacement of the top surface, after the first freeze-thaw cycle. During the following freeze-thaw cycles the mastic damage continuous to increase but with a decreasing rate while the damage in the aggregate-mastic interface is only affected by the manually added damage from the snow plow. These results indicate a need to include the growth of -and emergence of new air voids in the model as well as an investigation of the actual behavior and influence of the damage evolution in the interface regions.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf