Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Katic, Janko
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Efficient Energy Harvesting Interface for Implantable Biosensors2015Licentiatavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    Energy harvesting is identified as a promising alternative solution for powering implantable biosensors. It can completely replace the batteries, which are introducing many limitations, and it enables the development of self-powered implantable biosensors. An interface circuit is necessary to correct for differences in the voltage and power levels provided by an energy harvesting device from one side, and required by biosensor circuits from another. This thesis investigates the available energy harvesting sources within the human body, selects the most suitable one and proposes the power management unit (PMU), which serves as an interface between a harvester and biosensor circuits. The PMU targets the efficient power transfer from the selected source to the implantable biosensor circuits.

    Based on the investigation of potential energy harvesting sources, a thermoelectric energy harvester is selected. It can provide relatively high power density of 100 μW/cm2 at very low temperature difference available in the human body. Additionally, a thermoelectric energy harvester is miniature, biocompatible, and it has an unlimited lifetime.

    A power management system architecture for thermoelectric energy harvesters is proposed. The input converter, which is the critical block of the PMU, is implemented as a boost converter with an external inductor. A detailed analysis of all potential losses within the boost converter is conducted to estimate their influence on the conversion efficiency. The analysis showed that the inevitable conduction and switching losses can be reduced by the proper sizing of the converter’s switches and that the synchronization losses can be almost completely eliminated by an efficient control circuit. Additionally, usually neglected dead time losses are proved to have a significant impact in implantable applications, in which they can reduce the efficiency with more than 2%.

    An ultra low power control circuit for the boost converter is proposed. The control is utilizing zero-current switching (ZCS) and zero-voltage switching (ZVS) techniques to eliminate the synchronization losses and enhance the efficiency of the boost converter. The control circuit consumes an average power of only 620 nW. The boost converter driven by the proposed control achieves the peak efficiency higher than 80% and can operate with harvested power below 5 μW. For high voltage conversion ratios, the proposed boost converter/control combination demonstrates significant efficiency improvement compared to state-of-the-art solutions.

    Ladda ner fulltext (pdf)
    Licentiate Thesis
  • 2.
    Katic, Janko
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

    Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

    Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

    Ladda ner fulltext (pdf)
    Doc_Thesis_JK
  • 3.
    Katic, Janko
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rodriguez, Saul
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rusu, Ana
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    A Dual-Output Thermoelectric Energy Harvesting Interface with 86.6% Peak Efficiency at 30 μW and Total Control Power of 160 nW2016Ingår i: IEEE Journal of Solid-State Circuits, ISSN 0018-9200, E-ISSN 1558-173XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    A thermoelectric energy harvesting interface based on a single-inductor dual-output (SIDO) boost converter is presented. A system-level design methodology combined with ultra-low power circuit techniques reduce the power consumption and minimize the losses within the converter. Additionally, accurate zero-current switching (ZCS) and zero-voltage switching (ZVS) techniques are employed in the control circuit to ensure high conversion efficiency at μW input power levels. The proposed SIDO boost converter is implemented in a 0.18 μm CMOS process and can operate from input voltages as low as 15 mV. The measurement results show that the converter achieves a peak conversion efficiency of 86.6% at 30 μW input power.

    Ladda ner fulltext (pdf)
    EH_Interface
  • 4.
    Katic, Janko
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rodriguez, Saul
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Rusu, Ana
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters2017Ingår i: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 33, nr 5, s. 4125-4134, artikel-id 7940053Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A dual-source energy harvesting interface that combines energy from implanted glucose biofuel cell and thermoelectric generator is presented. A single-inductor dual-input dual-output boost converter topology is employed to efficiently transfer the extracted power to the output. A dual-input feature enables the simultaneous maximum power extraction from two harvesters, while a dual-output allows a control circuit to perform complex digital functions at nW power levels. The control circuit reconfigures the converter to improve the efficiency and achieve zero-current and zero-voltage switching. The measurement results of the proposed boost converter, implemented in a 0.18 μm CMOS process, show a peak efficiency of 89.5% when both sources provide a combined input power of 66 μW. In the single-source mode, the converter achieves a peak efficiency of 85.2% at 23 μW for the thermoelectric source and 90.4% at 29 μW for the glucose biofuel cell. The converter can operate from minimum input voltages of 10 mV for the thermoelectric source and 30 mV for the glucose biofuel cell. 

    Ladda ner fulltext (pdf)
    EH_MS_JK
  • 5.
    Katic, Janko
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Rodriguez, Saul
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    Rusu, Ana
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar.
    An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters2016Ingår i: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo: IEEE, 2016, s. 504-507Konferensbidrag (Refereegranskat)
    Abstract [en]

    A theoretical analysis of losses in low power thermoelectric harvester interfaces is used to find expressions for properly sizing the power transistors according to the input voltage level. These expressions are used to propose an adaptive FET sizing technique that tracks the input voltage level and automatically reconfigures the converter in order to improve its conversion efficiency. The performance of a low-power thermoelectric energy harvesting interface with and without the proposed technique is evaluated by circuit simulations under different input voltage/power conditions. The simulation results show that the proposed technique improves the conversion efficiency of the energy harvesting interface up to 12% at the lowest input voltage/power levels.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Katic, Janko
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rodriguez, Saul
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rusu, Ana
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    An Efficient Boost Converter Control for Thermoelectric Energy Harvesting2013Ingår i: Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference on, IEEE conference proceedings, 2013, s. 385-388Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents an ultra-low power controlcircuit for a DC-DC boost converter targeting implantablethermoelectric energy harvesting applications. Efficiency of theinput converter is enhanced by utilizing zero-current switchingtechnique. Adaptive delay between ON states of switches assureszero-voltage switching of synchronous rectifier and reducesswitching losses. The control circuit employing both techniquesconsumes an average power of 620nW. This allows the converterto operate from harvested power below 5μW. For voltageconversion ratios above 20, the proposed circuits and techniquesdemonstrate efficiency improvement compared to the state-of-the-art solutions.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Katic, Janko
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rodriguez, Saul
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Rusu, Ana
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors2014Ingår i: NORCHIP, 2014, IEEE conference proceedings, 2014, s. 1-4Konferensbidrag (Refereegranskat)
    Abstract [en]

    Efficiency of an ultra-low power energy harvesting dc-dc converter depends on its losses and the power consumption of the control circuit. Unlike other loss mechanisms, losses related to dead times have not been thoroughly studied. Therefore, in most cases these losses are not adequately suppressed. This paper investigates dead time losses and their impact on the overall system efficiency. Simple expressions for fast estimation of dead time losses are derived. Analysis shows that in many applications where high voltage conversions are required, such as implantable biosensors, the efficiency reduction due to these losses can easily exceed 2%. The analysis is validated using an adaptive dead time circuit which minimizes the associated losses and improves the overall system efficiency according to the calculated values.

    Ladda ner fulltext (pdf)
    fulltext
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf