Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Alma E. V.
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kasimova, Marina A.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Delemotte, Lucie
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Exploring the Viral Channel Kcv(PBCV-1) Function via Computation2018In: Journal of Membrane Biology, ISSN 0022-2631, E-ISSN 1432-1424, Vol. 251, no 3, p. 419-430Article in journal (Refereed)
    Abstract [en]

    Viral potassium channels (Kcv) are homologous to the pore module of complex -selective ion channels of cellular organisms. Due to their relative simplicity, they have attracted interest towards understanding the principles of conduction and channel gating. In this work, we construct a homology model of the open state, which we validate by studying the binding of known blockers and by monitoring ion conduction through the channel. Molecular dynamics simulations of this model reveal that the re-orientation of selectivity filter carbonyl groups coincides with the transport of potassium ions, suggesting a possible mechanism for fast gating. In addition, we show that the voltage sensitivity of this mechanism can originate from the relocation of potassium ions inside the selectivity filter. We also explore the interaction of with the surrounding bilayer and observe the binding of lipids in the area between two adjacent subunits. The model is available to the scientific community to further explore the structure/function relationship of Kcv channels.

  • 2.
    Kasimova, Marina A.
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Lindahl, Erik
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Delemotte, L.
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Determining the molecular basis of voltage sensitivity in membrane proteins2018In: The Journal of General Physiology, ISSN 0022-1295, E-ISSN 1540-7748, Vol. 215, no 10, p. 1444-1458Article in journal (Refereed)
    Abstract [en]

    Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested. 

  • 3.
    Kasimova, Marina A.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.
    Lindahl, Erik
    KTH.
    Delemotte, Lucie
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.
    Detection of Voltage-Sensing Residues in Membrane Proteins2018In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 114, no 3, p. 476A-476AArticle in journal (Other academic)
  • 4.
    Kasimova, Marina
    et al.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics.
    Yazici, Aysenur
    Granata, Daniele
    Rohacs, Tibor
    Carnevale, Vincenzo
    Dynamic Solvation of Protein Cavities Underlies TRPV1 Gating2017In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 112, no 3, p. 466A-466AArticle in journal (Refereed)
  • 5.
    Roose, Benjamin W.
    et al.
    Univ Penn, Dept Chem, 231 S 34th St, Philadelphia, PA 19104 USA..
    Zemerov, Serge D.
    Univ Penn, Dept Chem, 231 S 34th St, Philadelphia, PA 19104 USA..
    Wang, Yanfei
    Harvard Med Sch, 300 Longwood Ave, Boston, MA 02115 USA..
    Kasimova, Marina A.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.
    Carnevale, Vincenzo
    Temple Univ, Coll Sci & Technol, Inst Computat Mol Sci, 1925 N 12th St, Philadelphia, PA 19122 USA..
    Dmochowski, Ivan J.
    Univ Penn, Dept Chem, 231 S 34th St, Philadelphia, PA 19104 USA..
    A Structural Basis for Xe-129 Hyper-CEST Signal in TEM-1 beta-Lactamase2019In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 20, no 2, p. 260-267Article in journal (Refereed)
    Abstract [en]

    Genetically encoded (GE) contrast agents detectable by magnetic resonance imaging (MRI) enable non-invasive visualization of gene expression and cell proliferation at virtually unlimited penetration depths. Using hyperpolarized Xe-129 in combination with chemical exchange saturation transfer, an MR contrast approach known as hyper-CEST, enables ultrasensitive protein detection and biomolecular imaging. GE MRI contrast agents developed to date include nanoscale proteinaceous gas vesicles as well as the monomeric bacterial proteins TEM-1 beta-lactamase (bla) and maltose binding protein (MBP). To improve understanding of hyper-CEST NMR with proteins, structural and computational studies were performed to further characterize the Xe-bla interaction. X-ray crystallography validated the location of a high-occupancy Xe binding site predicted by MD simulations, and mutagenesis experiments confirmed this Xe site as the origin of the observed CEST contrast. Structural studies and MD simulations with representative bla mutants offered additional insight regarding the relationship between local protein structure and CEST contrast.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf