Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hagberg, Daniel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
    Molecular Engineering of Organic Chromophores for Dye Sensitized Solar Cell Applications2008In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 130, p. 6259-6266Article in journal (Refereed)
    Abstract [en]

    Novel unsymmetrical organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at a molecular level and synthesized for sensitization of mesoscopic titanium dioxide injection solar cells. The unsymmetrical organic sensitizers 3-(5-(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D5), 3-(5-bis(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D7), 5-(4-(bis(4-methoxyphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D9), and 3-(5-bis(4,4'-dimethoxydiphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D11) anchored onto TiO2 and were tested in dye-sensitized solar cell with a volatile electrolyte. The monochromatic incident photon-to-current conversion efficiency of these sensitizers is above 80%, and D11-sensitized solar cells yield a short-circuit photocurrent density of 13.90 +/- 0.2 mA/cm(2), an open-circuit voltage of 740 +/- 10 mV, and a fill factor of 0.70 +/- 0.02, corresponding to an overall conversion efficiency of 7.20% under standard AM 1.5 sun light. Detailed investigations of these sensitizers reveal that the long electron lifetime is responsible for differences in observed open-circuit potential of the cell. As an alternative to liquid electrolyte cells, a solid-state organic hole transporter is used in combination with the D9 sensitizer, which exhibited an efficiency of 3.25%. Density functional theory/time-dependent density functional theory calculations have been employed to gain insight into the electronic structure and excited states of the investigated species.

  • 2.
    Hagberg, Daniel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630).
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630).
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630).
    Brinck, Tore
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630).
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry (closed 20110630).
    Rhodanine Dyes for Dye Sensitized Solar Cells: Spectroscopy, Energy Levels and Photovoltaic Performance2009In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 11, p. 133-141Article in journal (Refereed)
    Abstract [en]

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  • 3.
    Hagberg, Daniel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Brinck, Tove
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Linder, Mats
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Jiang, Xiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Symmetric and Unsymmetric Donor Functionalization. Comparing Structural and Spectral Benefits of Chromophores for Dye Sensitized Solar Cells.2009In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 19, p. 7232-7238Article in journal (Refereed)
    Abstract [en]

     

    A series of organic chromophores have been synthesized in order to investigate the benefits of structural versus spectral properties as well as the absorption properties and solar cell performance when introducing unsymmetrical substituents in the chromophore. Exceptionally high Voc was found for the symmetrical, structural benefited dye, which also gave the best overall solar cell performance.

     

  • 4.
    Hagberg, Daniel P.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    A novel organic chromophore for dye-sensitized nanostructured solar cells2006In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, no 21, p. 2245-2247Article in journal (Refereed)
    Abstract [en]

    A novel and efficient polyene-diphenylaniline dye for dye-sensitized solar cells has been synthesized. The dye has a short synthesis route and is readily adsorbed on TiO2 under a variety of dye-bath conditions. The overall solar-to-energy conversion efficiency is over 5% in the preliminary tests, in comparison with the conventional N719 dye which gives 6% under the same conditions. The dye is designed for future use also in solid state devices, with triarylamine based hole conductors.

  • 5.
    Hagberg, Daniel P.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Design and synthesis of organic chromophores for dye sensitized solar cells - 12008In: ACS National Meeting Book of Abstracts, 2008Conference paper (Refereed)
    Abstract [en]

    The demand for alternative power sources has drawn the attention to a variety of light harvesting devices. Among these, the dye sensitized solar cells (DSSCxs) have attracted a number of research groups in the last decades. Here we present a series of organic chromophores based on a by us published dye, D5. To extend the spectral response of the D5 chromophore compared to N719 and to fine tune the HOMO and LUMO energy levels of the sensitizers on a molecular level, a number of modifications can be made. The chromophores consist of donor, linker and acceptor groups, which can be alternated independently to tune the HOMO and LUMO energy level contributions of different groups and to attain a HOMO and LUMO energy library.

  • 6.
    Hagberg, Daniel P.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Nonomura, Kazeteru
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Qin, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Brinck, Tore
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Tuning the HOMO and LUMO Energy Levels of Organic Chromophores For Dye Sensitized Solar Cells2007In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, no 72, p. 9550-9556Article in journal (Refereed)
    Abstract [en]

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  • 7.
    Hagberg, Daniel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    A Light Resistant Organic Sensitizer for Solar Cell Applications2009In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 48, p. 1576-1580Article in journal (Refereed)
    Abstract [en]

    (Figure Presented) Finely tuned: A stable dye-sensitized solar cell that contains a molecularly engineered organic dye has been prepared. The efficiency of the cell remains at 90% after 1000 h of light soaking at 60 °C. The remarkable stability of the cell is also reflected in the open-circuit voltage value (Voc), short-circuit photocurrent-density value (J sc), and the fill factor, which also show barely no decline (see picture).

  • 8.
    Hagberg, Daniel
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Highly efficient Organic Sensitizers for Solid State Dye Sensitized Solar Cells2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 38, p. 16816-16820Article in journal (Refereed)
    Abstract [en]

    Organic sensitizers comprising of donor, electron-conducting, and anchoring groups designed and developed for dye-sensitized solar cell applications. The solar cell employing a spiro-OMeTAD hole transporting material exhibits a short circuit photocurrent density of 9.64 mA/cm2, the open circuit voltage of 798 mV and a fill factor of 0.57, corresponding to an overall conversion efficiency of 4.4% at standard AM 1.5 sunlight. Photo-induced absorption spectroscopy probes an efficient hole-transfer from dyes to the spiro-OMeTAD.

  • 9.
    Jiang, Xiao
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells2010In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 6, p. 2799-2805Article in journal (Refereed)
    Abstract [en]

    Three triphenylamine-based organic sensitizers with different electron-donating substituents (butoxyl chains or dimethylamine groups) were examined to investigate the effect of bulky alkoxy donor substituents on the photovoltaic performances of dye-sensitized solar cells (DSCs) in the presence and absence of the coadsorbent chenodeoxycholic acid (CDCA) in dye-bath solutions. The study showed that, using the D29 dye without bulky alkoxy substituents, the power conversion efficiency of DSC was significantly increased by about 84% in the presence of CDCA as compared to that in the absence of CDCA addition during the sensitization. However, the photovoltaic performance of D35-sensitized DSC having four bulky butoxyl substituents was not dependent on CDCA at all, probably due to the inherent structural nature of the D35 molecule. The DSC based on the D37 sensitizer with only two bulky butoxyl chains displayed an expected medium performance as compared to D29 and D35. The inclusion of bulky alkoxy electron-donating substituents in dye molecules for efficient DSCs suppressed the electron recombination and reduced the interactions between dye molecules. This emphasizes the importance of designing novel dyes including functional groups that incorporate the properties normally needed from an external coadsorbent. The development of a coadsorbent free system is in particular important for the future economization and simplification of the DSCs' assembly process.

  • 10.
    Karlsson, K. Martin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Design and synthesis of novel organic chromophores for dye sensitized solar cells - 22008In: ACS National Meeting Book of Abstracts, 2008, p. ORGN 493-Conference paper (Refereed)
    Abstract [en]

    One of the main issues of today is the energy problem where the use of fossil fuels has lead to environmental changes. The development of environmentally friendly alternatives is therefore of great importance. The sun is the perfect energy source since it supplies the earth with much more energy than we currently need. The development of dye sensitized solar cells (DSSC's) is one possible low cost alternative to harvest the solar energy. Here we present a series of different organic dyes for DSSC's in our search for better understanding of the dye's influence on the solar cell's performance. The aim of this work has been to alter the linker between the donor and acceptor parts in the chromophore in order to investigate how this will influence light absorption and efficiency of the solar cell.

  • 11.
    Karlsson, Karl Martin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Jiang, Xiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kaufmann, Susanna
    Gabrielsson, Erik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Erik Martin Jesper
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Rensmo, Håkan
    Hagfeldt, Anders
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Triphenylamine Based Organic Chromophores Containing Two Anchoring Groups for Dye Sensitized Solar CellsManuscript (preprint) (Other academic)
  • 12.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Photoelectrochemical studies of dye-sensitized solar cells using organic dyes2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight.

    State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components.

    In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results.

    The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V).

    The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII.

    The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the DSC components and novel organic dyes.

  • 13.
    Marinado, Tannia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Influence of π-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells2007In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, no 4, p. 1853-1860Article in journal (Refereed)
    Abstract [en]

    Two organic dyes with the general structure donor-conjugated chain-acceptor (D-pi-A) have been investigated as sensitizers for nanocrystalline TiO2 solar cells. The electron donor and acceptor groups were pyrrolidine and cyano acrylic acid, respectively. The conjugated chain of 2-cyano-3-{5-[2-(4-pyrrolidin-1-ylphenyl)vinyl]thiophen-2-yl}acrylic acid contains one phenyl ring and a thiophene unit and is therefore denoted PT, while for 2-cyano-3-{5 -[2-(5-pyrrolidin-1-ylthiophen-2-yl)vinyl]thiophen-2-yl}acrylic acid the phenyl ring is replaced by a second thiophene unit (TT). Solar-to-electrical energy conversion efficiencies under simulated AM 1.5 irradiation (1000 W m(-2)) of 2.3% were obtained for solar cells based on PT but of less than 0.05% for those based on TT. The reasons for the dramatic difference of the efficiencies were analyzed. Photoinduced absorption measurements revealed that the TT dye was not properly regenerated by redox electrolyte after electron injection. This sluggish regeneration is probably due to the 0.3 V less positive HOMO level for TT dye compared to the PT dye, resulting in a lower driving force for regeneration of the oxidized dye by iodide in the electrolyte. In addition, regeneration of the oxidized TT dye and electron injection from the excited TT dye may be poor due to formation of dye aggregates/complexes, as FT-IR measurements show an excess of not properly and/or unidentate bound TT dye molecules instead of bidentate bound PT dye molecules. The results highlight that small structural change of dyes results in significant changes in redox energies and binding features, affecting dramatically the performance of these dyes in dye-sensitized solar cells.

  • 14.
    Marinado, Tannia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Edvinsson, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Brinck, Tore
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Physical Chemistry.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Tian, Haining
    Yang, Xixhuan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Energy level tuning of organic dyes for fundamental studies of the oxide/dye/electrolyte interface in solar cellsManuscript (Other academic)
  • 15.
    Marinado, Tannia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hahlin, Maria
    Jiang, Xiao
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Quintana, Maria
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Erik M J
    Gabrielsson, Erik
    Plogmaker, Stefan
    Hagberg, Daniel P
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    Zakeeruddin, M
    Gratzel, Michael
    Siegbahn, Hans
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Rensmo, Håkan
    Surface Molecular Quantification and Photoelectrochemical Characterization of Mixed Organic Dye and Coadsorbent Layers on TiO2 for Dye-Sensitized Solar Cells2010In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 27, p. 11903-11910Article in journal (Refereed)
    Abstract [en]

    Different molecular layers on TiO2 were prepared by using the p-dimethylaniline triphenylamine based organic dye, D29, together with the coadsorbents decylphosphonic acid (DPA), dineohexyl bis(3,3-dimethylbutyl)phosphinic acid (DINHOP), and chenodeoxycholic acid (CDCA). The surface molecular structure of dye and coadsorbent layers on TiO2 was investigated by photoelectron spectroscopy (PES). A focus was to determine the surface molecular concentrations using characteristic photoelectron core levels. Dye-sensitized solar cells (DSCs) were prepared from the same substrate and were further characterized by photoelectrochemical methods. Together the investigation gives information on the arrangement of the mixed molecular layer and a first insight to the extent to which the coadsorbents exchange with dye molecules on the TiO2 surface for the examined conditions.

  • 16.
    Marinado, Tannia
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Nonomura, Kazuteru
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Nissfolk, Jarl
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Karlsson, Martin K
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Mori, Shogo
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 4, p. 2592-2598Article in journal (Refereed)
    Abstract [en]

    Three donor-linker-acceptor triphenylamine-based cyanoacrylic acid organic dyes used For dye-sensitized solar cells (DSCs) have been examined with respect to their effect on the open-circuit voltage (V-oc). Our previous study showed a decrease in V-oc for DSCs based oil dyes with increased molecular size (increased linker conjugation). In the present study, we investigate the origin of V-oc with respect to (i) conduction band (E-CB) positions of TiO2 and (ii) degree of recombination between electrons in TiO2 and electrolyte acceptor species at the interface. These parameters were Studied its it function of dye structure, dye load, and I-2 concentration. Two types of behavior were identified: the smaller polyene dyes show a surface-protecting effect preventing recombination upon increased dye loading, whereas the larger dyes enhance the recombination. How the different dye structures affect the recombination is discussed in terms of dye surface blocking and intermolecular interactions between dyes and electrolyte acceptor species.

  • 17.
    Nonomura, Kazuteru
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Yunhua
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Zhang, Rong
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    The Effect of UV-Irradiation (under Short-Circuit Condition) on Dye-Sensitized Solar Cells Sensitized with a Ru-Complex Dye Functionalized with a (diphenylamino)Styryl-Thiophen Group2009In: International Journal of Photoenergy (Online), ISSN 1110-662X, E-ISSN 1687-529XArticle in journal (Refereed)
    Abstract [en]

    A new ruthenium complex, cis-di(thiocyanato)(2,2'-bipyridine-4,4'-dicarboxylic acid)(4,4'-bis(2-(5-(2-(4-diphenylaminophenyl)ethenyl)-thiophen-2-yl)eth enyl)-2,2'-bipyridine)ruthenium(II) (named E322) has been synthesized for use in dyesensitized solar cells (DSCs). Higher extinction coefficient and a broader absorption compared to the standard Ru-dye, N719, were aimed. DSCs were fabricated with E322, and the efficiency was 0.12% initially. (4.06% for N719, as reference). The efficiency was enhanced to 1.83% by exposing the cell under simulated sunlight containing UV-irradiation at short-circuit condition. The reasons of this enhancement are (1) enhanceing electron injection from sensitizer to TiO2 following a shift toward positive potentials of the conduction band of TiO2 by the adsorption of protons or cations from the sensitizer, or from the redox electrolyte and (2) improving the regeneration reaction of the oxidized dye by the redox electrolyte by the dissolution of aggregated dye from the surface of TiO2 following the treatment.

  • 18. Quintana, Maria
    et al.
    Marinado, Tannia M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Nonomura, Kazuteru
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Boschloo, Gerrit
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Organic chromophore-sensitized ZnO solar cells: Electrolyte-dependent dye desorption and band-edge shifts2009In: Journal of Photochemistry and Photobiology A: Chemistry, ISSN 1010-6030, E-ISSN 1873-2666, Vol. 202, no 2-3, p. 159-163Article in journal (Refereed)
    Abstract [en]

    An organic chromophore D5 (3-(5-(4-(diphenylamino)styryl)thiophene-2-yl)-2-cyanoacrylic acid) was tested as a sensitizer in photoelectrochemical mesoporous ZnO solar cells. Using thin (similar to 3 mu m) mesoporous ZnO electrodes, high incident photon-to-current conversion efficiencies of up to 70% were obtained, while power conversion efficiencies up to 2.4% were found in simulated sunlight (100 mWcm(-2)). Long dye adsorption times (16h) could be used without aggregation or precipitation of the dye. The composition of the iodide/triiodide-based electrolyte was found to be crucial in optimization of the ZnO-based dye-sensitized solar cell. A high concentration of Li+ ions was found to be shift the ZnO conduction band edge to more negative potential, whereas opposite behavior is found for mesoporous TiO2 cells. It was also found to be detrimental for solar cell performance and stability. Electrolyte-dependent and photoinduced dye desorption from the ZnO electrode was identified as a major stability problem in D5-sensitized ZnO solar cells.

  • 19. Scholin, Rebecka
    et al.
    Quintana, Maria
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Johansson, Erik M. J.
    Hahlin, Maria
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630). KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    Rensmo, Håkan
    Preventing Dye Aggregation on ZnO by Adding Water in the Dye-Sensitization Process2011In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 39, p. 19274-19279Article in journal (Refereed)
    Abstract [en]

    ZnO based dye-sensitized solar cells have been studied using N719 and Z-907 as sensitizing dyes, with and without including water to the dye solution. The solar cells have been characterized with photoelectric measurements and the interface between the dye and the ZnO surface has been studied using photoelectron spectroscopy. It was shown that water in the dye solution greatly reduces surface dye aggregation and thereby enhances the solar cell performance for N719. For Z-907 where no sign of dye aggregation could be found, the presence of water had minor effect on the surface structure and solar cell performance.

  • 20. Wiberg, Joanna
    et al.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Albinsson, Bo
    Distance and Driving Force Dependencies of Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells2010In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 114, no 45, p. 14358-14363Article in journal (Refereed)
    Abstract [en]

    A series of dyes based on a triphenylamine donor and a rhodanine acetic acid anchor/acceptor for solar cell application has been studied with regards to electron injection and recombination kinetics using femtosecond transient absorption The series contains three dyes, with estimated electron transfer distances ranging from 17 2 to 11 0 angstrom and which have shown significant differences in energy conversion efficiencies The injection and recombination kinetics were studied in the NIR region where electrons in the conduction band of the TiO2 are suggested to absorb For all dyes, the injection rate is larger than (200 fs)(-1) which implicates a quantitative injection efficiency Surprisingly, the subsequent recombination reaction has a rate that increases with increasing linker length On the other hand, this behavior is consistent with the concomitant decrease in driving force for this series of dyes Moreover, the lifetimes show exponential distance dependence when corrected for driving force and reorganization energy, which indicates a superexchange interaction between the electrons in TiO2 and the radical cations of the dyes A dependence on probe wavelength of the attenuation factor was found giving a beta value of 0 38 angstrom(-1) at 940 nm and 0 49 angstrom(-1) at 1040 nm The difference is suggested to be due to the difference in electronic coupling between fully separated dye cations and injected electrons versus geminate electron-hole pairs Addition of tert butylpyridine, which from previous work is known to give a substantial drop in the IPCE values for the studied dyes, was found to decrease the amount of long-lived electrons in the TiO2 without affecting the injection rate

  • 21. Wiberg, Joanna
    et al.
    Marinado, Tannia
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
    Hagberg, Daniel P.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hagfeldt, Anders
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry.
    Albinsson, Bo
    Effect of Anchoring Group on Electron Injection and Recombination Dynamics in Organic Dye-Sensitized Solar Cells2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 9, p. 3881-3886Article in journal (Refereed)
    Abstract [en]

    In the field of dye-sensitized solar cells, the number of different sensitizing dyes is increasing rapidly. To produce low-cost dyes, much work is being directed toward synthesizing all-organic, ruthenium-free dyes with high extinction coefficients and broad absorption bands with large solar spectrum overlap. One of the best dyes, the polyene-diphenylaniline dye D5L2A1, has a rather blue absorption with an IPCE onset at around 650 nm, but it still has an energy conversion efficiency of almost 6%. To increase the overlap with the solar spectrum, the cyanoacrylic acid anchoring group was changed to rhodanine-3-acetic acid in complex D5L2A3. This gave an IPCE onset at around 750 nm, but unfortunately, it also decreased the overall efficiency to a modest 1.7%. By femtosecond transient absorption, we show that the electron injections into TiO2 for the two dyes are ultrafast and indistinguishable with our time resolution (< 200 fs). However, charge recombination is also ultrafast, with different fractions of a ca. 500-fs component for the two dyes. Yet, the fraction of the faster decay component is larger for D5L2A3 than for D5L2A1. Here, we provide an interpretation of the implications of changing anchoring group. We believe that a lack of electron density oil the binding oxygens of the D5L2A3 LUMO, due to the rhodanine group, promotes a higher probability for electron injection to short-lived surface trap states compared to the situation for the fully conjugated D5L2A1.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf