Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abid, Fahim
    et al.
    KTH.
    Ghorbani, Hossein
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Edin, Hans Ezz
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Differences in morphology and polarization properties of heat-treated XLPE and LDPE insulation2016In: 2016 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA (IEEE CEIDP), IEEE conference proceedings, 2016, p. 113-116Conference paper (Refereed)
    Abstract [en]

    Cross-linked polyethylene (XLPE) is the most commonly used insulating material for extruded high voltage cable applications. Degassing is a heat-treatment process that is performed to remove methane from XLPE insulation which is formed during the crosslinking reactions as a by-product. Apart from removing methane, heat-treatment influences the electrical properties through changing the morphology due to annealing and also removal of polar crosslinking by-products. Scanning electron microscopy (SEM) is generally used to observe the changes in crystalline structure of the polymer. Frequency domain spectroscopy (FDS) is widely used to study polarization properties of dielectric materials. In this study these two methods are used for a comparative analysis of XLPE and LDPE subjected to different heat-treatment time, with or without a diffusion barrier. Electrical measurements are performed at room temperature. From the SEM imaging conducted after permanganate acid etching, formation of spherulites due to heat-treatment is not obvious in neither LDPE nor in XLPE. However, distinctions between LDPE and XLPE in SEM micrographs are evident. From studies with dielectric polarization spectroscopy, it is found that the LDPE samples are less sensitive to heat-treatment in comparison to the XLPE samples while dissipation factor of XLPE samples are influenced by the choice of pressing film used during sample preparation.

  • 2.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Amir Masoud, Pourrahimi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Christian, Sjöstedt
    Martin, Bellander
    Mikael S., Hedenqvist
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ulf W., Gedde
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Degradation of fluoroelastomers in rapeseed biodiesel at different oxygen concentrations2017In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 136, p. 10-19Article in journal (Refereed)
    Abstract [en]

    The degradation of fluoroelastomers (FKM) based on different monomers, additives and curing systems was studied after exposure to rapeseed biodiesel at 100 °C and different oxygen partial pressures. The sorption of fuel in the carbon black-filled FKM terpolymer was promoted by the fuel-driven cavitation in the rubber. The bisphenol-cured rubbers swelled more in biodiesel than the peroxide-cured FKM, presumably due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. With any of the selected types of monomer, the FKM rubbers absorbed biodiesel faster and to a greater extent with increasing oxygen partial pressure due to the increase in concentration of the oxidation products of biodiesel. Water-assisted complexation of biodiesel on magnesium oxide and calcium hydroxide particles led to dehydrofluorination of FKM, resulting in an extensive fuel uptake and a decrease in the strain-at-break and the Young's modulus of the rubbers. An increase in the CH2-concentration determined by infrared spectroscopy, and the appearance of biodiesel flakes in scanning electron micrographs of the extracted rubbers, were explained as being due to the presence of insoluble biodiesel grafted onto FKM on the unsaturated sites resulting from dehydrofluorination. The extensibility of the GFLT-type FKM was the least affected on exposure to biodiesel because this rubber contained less unsaturation and metal oxide/hydroxide particles.

  • 3.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, A. M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Christian, Sjöstedt
    Martin, Bellander
    Mikael S., Hedenqvist
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ulf W., Gedde
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel2017In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321Article in journal (Refereed)
    Abstract [en]

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the crosslinking density and carbonyl index due to the promotion of the oxidation of NBR. During the high-temperature autoclave ageing, less fuel was absorbed in the rubber, because the formation of hydroperoxides and acids was impeded. The extensibility of NBR aged in the autoclave decreased only slightly due to the cleavage of rubber chains by the biodiesel attack. The degradation of NBR in the absence of carbon black was explained as being due to oxidative crosslinking. The dissolution of ZnO crystals in the acidic components of biodiesel was retarded by removing the inter-particle porosity and surface defects through heat treating star-shaped ZnO particles. The rubber containing heat-treated ZnO particles swelled less in biodiesel than a NBR filled with commercial ZnO nanoparticles, and showed a smaller decrease in the strain-at-break and less oxidative crosslinking.

  • 4.
    Akhlaghi, Shahin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Sjöstedt, C.
    Bellander, M.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Degradation of carbon-black-filled acrylonitrile butadiene rubber in alternative fuels: Transesterified and hydrotreated vegetable oils2016In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 123, p. 69-79Article in journal (Refereed)
    Abstract [en]

    The deterioration of acrylonitrile butadiene rubber (NBR), a common sealing material in automobile fuel systems, when exposed to rapeseed biodiesel and hydrotreated vegetable oil (HVO) was studied. The fuel sorption was hindered in HVO-exposed rubber by the steric constraints of bulky HVO molecules, but it was promoted in biodiesel-exposed rubber by fuel-driven cavitation in the NBR and by the increase in diffusivity of biodiesel after oxidation. The absence of a tan δ peak of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was made possible in biodiesel-aged rubber by the detachment of bound rubber from particle surfaces. The HVO-exposed NBR showed a small decrease in strain-at-break due to the migration of plasticizer from the rubber, and a small increase in the Young’s modulus due to oxidative crosslinking. A drastic decrease in extensibility and Payne-effect amplitude of NBR on exposure to biodiesel was explained as being due to the damage caused by biodiesel to the continuous network of bound rubber-carbon black. A decrease in the ZnO crystal size with increasing exposure time suggested that the particles are gradually dissolved in the acidic components of oxidized biodiesel. The Zn2+ cations released from the dissolution of ZnO particles in biodiesel promoted the hydrolysis of the nitrile groups of NBR.

  • 5.
    Aljure, Mauricio
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Pourrahimi, Amir Masoud
    Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Electric Conduction in Mineral Oil based ZnONanofluids under Intense Electric FieldsManuscript (preprint) (Other academic)
    Abstract [en]

    The electric conduction processes in mineral oil based ZnO–C18 nanofluids under intense electric fields are investigated. For this, conduction currents are measured usinga needle-plane electrode configuration. Furthermore, an electrohydrodynamic (EHD) model is used here to discuss the charge generation mechanisms and the electronic properties of the ZnO–C18 nanofluids. The analysis of the conduction currents shows that ZnO–C18 nanoparticles increase the generation of charge carriers, and at the same time they augment the scavenging of quasi-free electrons compared with the measurements with mineral oil only. It is found that the existing nanoparticle electron scavenging model reported in the literature grossly underestimates the electron scavenging process here reported. A new analytical formulation for the nanoparticle electron scavenging process is proposed. The EHD model is also used to simulate the electric conduction processes just before negative streamer inception in mineral oil and ZnO–C18 nanofluids. It is shown that ZnO–C18 nanoparticles hinder the streamer initiation process by reducing the effective electric field at the tip of the needle. This electric field reduction is caused by the combined effect of the generation of charge carriers and the electron scavenging of ZnO–C18 nanoparticles.

  • 6. Castro-Mayorga, J. L.
    et al.
    Fabra, M. J.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Lagaron, J. M.
    The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications2017In: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 101, p. 32-44Article in journal (Refereed)
    Abstract [en]

    In this work, zinc oxide (ZnO) micron and nano sized-particles with different morphologies were synthesized by aqueous precipitation and evaluated as antimicrobial agents against foodborne pathogens. The most effective bactericide system was selected to prepare active poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by three different methods (i) direct melt-mixing, (ii) melt-mixing of preincorporated ZnO into PHBV18 (18 mol% valerate content) fiber mats made by electrospinning, and, (iii) as a coating of the annealed electrospun PHBV18/ZnO fiber mats over compression molded PHBV. Results showed that ZnO successfully improved the thermal stability of the PHBV18, being the preincorporation method the most efficient in mitigating the negative impact that the PHBV18 had on the thermal stability, barrier and optical properties of the PHBV films. Similar behavior was found for the coating structure although this film showed effective and prolonged antibacterial activity against Listeria monocytogenes. This study highlights the suitability of the PHBV/ZnO nanostructures for active food packaging and food contact surface applications.

  • 7.
    Guex, Leonard Gaston
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Sacchi, B.
    Peuvot, Kevin F.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Farris, S.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 27, p. 9562-9571Article, review/survey (Refereed)
    Abstract [en]

    The electrical conductivity of reduced graphene oxide (rGO) obtained from graphene oxide (GO) using sodium borohydride (NaBH4) as a reducing agent has been investigated as a function of time (2 min to 24 h) and temperature (20 degrees C to 80 degrees C). Using a 300 mM aqueous NaBH4 solution at 80 degrees C, reduction of GO occurred to a large extent during the first 10 min, which yielded a conductivity increase of 5 orders of magnitude to 10 S m(-1). During the residual 1400 min of reaction, the reduction rate decreased significantly, eventually resulting in a rGO conductivity of 1500 S m(-1). High resolution XPS measurements showed that C/O increased from 2.2 for the GO to 6.9 for the rGO at the longest reaction times, due to the elimination of oxygen. The steep increase in conductivity recorded during the first 8-12 min of reaction was mainly due to the reduction of C-O (e.g., hydroxyl and epoxy) groups, suggesting the preferential attack of the reducing agent on C-O rather than C=O groups. In addition, the specular variation of the percentage content of C-O bond functionalities with the sum of Csp(2) and Csp(3) indicated that the reduction of epoxy or hydroxyl groups had a greater impact on the restoration of the conductive nature of the graphite structure in rGO. These findings were reflected in the dramatic change in the structural stability of the rGO nanofoams produced by freeze-drying. The reduction protocol in this study allowed to achieve the highest conductivity values reported so far for the aqueous reduction of graphene oxide mediated by sodium borohydride. The 4-probe sheet resistivity approach used to measure the electrical conductivity is also, for the first time, presented in detail for filtrate sheet assemblies' of stacked GO/rGO sheets.

  • 8.
    Karlsson, Mattias E.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mamie, Yann C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Calamida, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Pourrahimi, Amir Masoud
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Synthesis of Zinc Oxide Nanorods via the Formation of Sea Urchin Structures and Their Photoluminescence after Heat Treatment2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 17, p. 5079-5087Article in journal (Refereed)
    Abstract [en]

    A protocol for the aqueous synthesis of ca. 1-mu m-long zinc oxide (ZnO) nanorods and their growth at intermediate reaction progression is presented, together with photoluminescence (PL) characteristics after heat treatment at temperatures of up to 1000 degrees C. The existence of solitary rods after the complete reaction (60 min) was traced back to the development of sea urchin structures during the first 5 s of the precipitation. The rods primarily formed in later stages during the reaction due to fracture, which was supported by the frequently observed broken rod ends with sharp edges in the final material, in addition to tapered uniform rod ends consistent with their natural growth direction. The more dominant rod growth in the c direction (extending the length of the rods), together with the appearance of faceted surfaces on the sides of the rods, occurred at longer reaction times (>5 min) and generated zinc-terminated particles that were more resistant to alkaline dissolution. A heat treatment for 1 h at 600 or 800 degrees C resulted in a smoothing of the rod surfaces, and PL measurements displayed a decreased defect emission at ca. 600 nm, which was related to the disappearance of lattice imperfections formed during the synthesis. A heat treatment at 1000 degrees C resulted in significant crystal growth reflected as an increase in luminescence at shorter wavelengths (ca. 510 nm). Electron microscopy revealed that the faceted rod structure was lost for ZnO rods exposed to temperatures above 600 degrees C, whereas even higher temperatures resulted in particle sintering and/or mass redistribution along the initially long and slender ZnO rods. The synthesized ZnO rods were a more stable Wurtzite crystal structure than previously reported ball-shaped ZnO consisting of merging sheets, which was supported by the shifts in PL spectra occurring at ca. 200 degrees C higher annealing temperature, in combination with a smaller thermogravimetric mass loss occurring upon heating the rods to 800 degrees C.

  • 9.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, A. T.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gubanski, S. M.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Influence of Nanoparticle Surface Coating on Electrical Conductivity of LDPE/Al2O3 Nanocomposites for HVDC Cable Insulations2017In: IEEE transactions on dielectrics and electrical insulation, ISSN 1070-9878, E-ISSN 1558-4135, Vol. 24, no 3, p. 1396-1404Article in journal (Refereed)
    Abstract [en]

    LDPE/metal oxide nanocomposites are promising materials for future high-voltage DC cable insulation. This paper presents data on the influence of the structure of the nanoparticle coating on the electrical conductivity of LDPE/Al2O3 nanocomposites. Al2O3 nanoparticles, 50 nm in size, were coated with a series of silanes with terminal alkyl groups of different lengths (methyl, n-octyl and n-octadecyl groups). The density of the coatings in vacuum was between 200 and 515 kg m(-3,) indicating substantial porosity in the coating. The dispersion of the nanoparticles in the LDPE matrix was assessed based on statistics for the nearest-neighbor particle distance. The electrical conductivity of the nanocomposites was determined at both 40 and 60 degrees C. The results show that an appropriate surface coating on the nanoparticles allowed uniform particle dispersion up to a filler loading of 10 wt.%, with a maximum reduction in the electrical conductivity by a factor of 35. The composites based on the most porous octyl-coated nanoparticles showed the greatest reduction in electrical conductivity and the lowest temperature coefficient of electrical conductivity of the composites studied.

  • 10.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, A.T
    Chalmers University of Technology.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pallon, Love
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gubanski, Stanislaw
    Chalmers University of Technology.
    Ohlsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Influence of nanoparticle surface coating on electrical conductivity of polyethylene/aluminium oxide nanocomposites for HVDC cable insulations2016In: IEEE transactions on dielectrics and electrical insulation, ISSN 1070-9878, E-ISSN 1558-4135Article in journal (Refereed)
  • 11.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Zhang, P.
    Diaz, A.
    Holler, M.
    Schneider, K.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Cavitation in strained polyethylene/aluminium oxide nanocomposites2017In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 87, p. 255-265Article in journal (Refereed)
    Abstract [en]

    The incorporation of metal oxide (e.g. Al2O3) nanoparticles has a pronounced positive effect on low-density polyethylene (LDPE) as an insulating material for high-voltage direct-current (HVDC) cables, the electrical conductivity being decreased by one to two orders of magnitude and charge species being trapped by the nanoparticles. The risk of debonding between the nanoparticles and the polymer matrix leading to electrical treeing via electrical discharges in the formed cavities was the motivation for this study. Scanning electron microscope (SEM), small-angle X-ray scattering (SAXS) and X-ray ptychographic tomography were used to study a series of LDPE nanocomposites which contained Al2O3 nanoparticles treated with silanes having terminal alkyl groups of different lengths (methyl, octyl and octadecyl). When specimens were subjected to a tensile strain (a typical specimen stretched beyond the onset of necking consisted of three zones according to SEM of specimens that were studied after removal of the external force: an essentially cavitation-free zone with low local plastic strain, a transitional zone in which local plastic strain showed a marked increase and the revealed concentration of permanent cavities increased with increasing plastic strain and a highly strained zone with extensive cavitation), the cavitation occurred mainly at the polymer-nanoparticle interface according to SEM and X-ray ptychographic tomography and according to SEM progressed with increasing plastic strain through an initial phase with no detectable formation of permanent cavities to a period of very fast cavitation and finally almost an order of magnitude slower cavitation. The polymer/nanoparticle interface was fractal before deformation, as revealed by the profile of the Porod region in SAXS, presumably due to the existence of bound polymers at the nanoparticle surface. A pronounced decrease in the interface fractal dimension was observed when the strain exceeded a critical value; a phenomenon attributed to the stress-induced de-bonding of nanoparticles. The strain-dependence of the interface fractal dimension value at low strain levels between composites containing differently treated nanoparticles seems to be an indicator of the strength of the nanoparticle-polymer interface.

  • 12.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Zhang, Peng
    Deutsches Elektronen-Synchrotron (DESY).
    Diaz, Ana
    Paul Scherrer Institut.
    Holler, Mirko
    Paul Scherrer Institut.
    Schneider, Konrad
    Leibniz Institut für Polymerforschung Dresden.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Cavitation in strained polyethylene/aluminium oxide nanocomposites2016In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945Article in journal (Refereed)
  • 13.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nanocomposites2015In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 66, p. 67-77Article in journal (Refereed)
    Abstract [en]

    The effect of silsesquioxane coating of aluminium oxide nanoparticles on their dispersion and on the interfacial strength between nanoparticles and polymer matrix in low-density polyethylene composites was studied. The surface chemistry of the nanoparticles was tailored from hydroxyl groups to alkyl groups with different lengths by reacting methyltrimethoxysilane (C1), octyltriethoxysilane (C8) or octadecyltrimethoxysilane (C18) with aluminium oxide nanoparticles. The core–shell structure of the coated nanoparticles was assessed by transmission electron microscopy, infrared spectroscopy and thermogravimetry. The inter-particle distance of the nanocomposite based on C8-coated nanoparticles showed only a small deviation from the ideal value, indicating a very good particle dispersion in the polymer. The interfacial adhesion between nanoparticles and matrix was determined by stretching nanocomposite specimens in a tensile testing machine to strains well beyond the yield point. A drop in the stress–strain curve indicated the onset of cavitation and necking in the nanocomposites. Samples stretched to different strain levels were studied by scanning electron microscopy and the cavitation was found to be confined to particle interfaces. The composite based on C18-coated nanoparticles showed the highest strain at cavitation/necking suggesting a high interfacial adhesion between nanoparticles and polymer.

  • 14.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Morphology and properties of silica-based coatings with different functionalities for Fe3O4, ZnO and Al2O3 nanoparticles2015In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 5, no 59, p. 48094-48103Article in journal (Refereed)
    Abstract [en]

    A facile single-step method for obtaining 2–3 nm thick silsesquioxane coatings on metal oxide nanoparticles using different carbon-functional silane precursors is presented. Iron oxide nanoparticles 8.5 nm in diameter were used as a model to evaluate the possibilities of forming different uniform carbon-functional coatings, ranging from hydrophobic to hydrophilic in character. Electron microscopy showed that all the coated nanoparticles could be described as core-shell nanoparticles with single Fe3O4 cores and carbon-functional silsesquioxane shells, without any core-free silicone oxide phase. Steric factors strongly influenced the deposited silicon oxide precursors with octyl-, methyl- or aminopropyl functionalities, resulting in coating densities ranging from 260 to 560 kg/m3. The methyl-functional coatings required several layers of silsesquioxane, 3–4, to build up the 2 nm structures, whereas only 1-2 layers were required for silsesquioxane with octyl groups. Pure silica coatings from tetraethoxysilanes were however considerably thicker due to the absence of steric hindrance during deposition, allowing the formation of 5–7 nm coatings of ca. 10 layers. The coating method developed for the iron oxide nanoparticles was generic and successfully transferred and up–scaled 30 and 325 times (by volume) to be applicable to 25 nm ZnO and 45 nm Al2O3 nanoparticles.

  • 15.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Sanchez, Carmen Cobo
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Fogelström, Linda
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Interactions between a phenolic antioxidant, moisture, peroxide and crosslinking by-products with metal oxide nanoparticles in branched polyethylene2016In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 125, p. 21-32Article in journal (Refereed)
    Abstract [en]

    Polyethylene composites based on metal oxide nanoparticles are emerging materials for use in the insulation of extruded HVDC cables. The short-term electrical performance of these materials is adequate, but their stability for extended service needs to be assessed. This study is focussed on the capacity of the nanoparticles to adsorb polar species (water, dicumyl peroxide and byproducts from peroxide-vulcanisation, acetophenone and cumyl alcohol) that have an impact on the electrical conductivity of nanocomposites, the oxidative stability by adsorption of phenolic antioxidants on the nanoparticles and the potential transfer of catalytic impurities from the nanoparticles to the polymer. The adsorption of water, dicumyl peroxide, acetophenone, cumyl alcohol and Irganox 1076 (phenolic antioxidant) on pristine and coated (hydrophobic silanes and poly(lauryl methacrylate)) Al2O3, MgO and ZnO particles ranging from 25 nm to 2 gm was assessed. Composites based on low-density polyethylene and the particles mentioned (<= 12 wt.%) were prepared, the degree of adsorption of Irganox 1076 onto the particles was assessed by OIT measurements, and the release of volatile species at elevated temperature was assessed by TG. The concentration of moisture adsorbed on the particles at 25 degrees C increased linearly with both increasing hydroxyl group concentration on the particle surfaces and increasing relative humidity. Dicumyl peroxide showed no adsorption on any of the nanoparticles. Acetophenone and cumyl alcohol showed a linear increase in adsorption with increasing concentration of hydroxyl groups, but the quantities were much smaller than those of water. Irganox 1076 adsorbed only onto the uncoated nanoparticles. Uncoated ZnO nanoparticles that contained ionic species promoted radical formation and a lowering of the OIT. This study showed that carefully coated pure metal oxide nano particles are not likely to adsorb phenolic antioxidants or dicumyl peroxide, but that they have the capacity to adsorb moisture and polar byproducts from peroxide vulcanisation, and that they will not introduce destabilizing ionic species into the polymer matrix. Low contents of dry, equiaxed ZnO and MgO particles strongly retarded the release of volatile species at temperatures above 300 degrees C.

  • 16.
    Pallon, L. K. H.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, A. T.
    Pourrahimi, A. M.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gubanski, S.
    Gedde, U. W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 22, p. 8590-8601Article in journal (Refereed)
    Abstract [en]

    Low density polyethylene (LDPE) nanocomposites with a reduced conductivity of two orders of magnitude are reported as a novel insulation material for high voltage distribution of renewable energy. The key to the high insulation capacity was to provide 70 nm hexagonal MgO nanoparticles with relatively tong, preferably 18 units long, hydrocarbon functional silsesquioxane coatings. This rendered the surface of the particles completely hydrophobic and also served as a protective layer against adsorption of polar low molecular weight atmospheric substances (H2O and CO2). The elimination of trace amounts of water, in combination with the provided carbon functionality, dramatically improved the dispersion of MgO nanoparticles. The lowest volume conductivity was ca. 7 x 10(-16) s m(-1) for 3 wt% surface coated nanoparticles. Extensive electron microscopy characterization was further used to relate the measured volume conductivity, acquired under conditions that resemble 800 kV high voltage direct current (HVDC) cables, to the distribution of the nanoparticles in the polymer matrix. The results show that an appropriate surface-modification approach yielded uniformly dispersed MgO nanoparticles up to contents as high as 9 wt%, with maintained 10-100 times reduced volume conductivity. Simulations of the MgO nanoparticles distribution revealed that the required interaction radius of the MgO-phase was 775 nm, setting a lower limit of particle amount to effectively work as electrical insulation promoters. The reduced volume conductivity values and scalable processing chemistry reported allow for the production of the next generation insulation material for HVDC cables.

  • 17.
    Pallon, Love K. H.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Liu, D.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, A. T.
    Gubanski, S.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Formation and the structure of freeze-dried MgO nanoparticle foams and their electrical behaviour in polyethylene2015In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 14, p. 7523-7534Article in journal (Refereed)
    Abstract [en]

    Electrically insulating low-density polyethylene (LDPE) nanocomposites based on dispersed MgO nanoparticle foams are reported. The foams were obtained via freeze-drying aqueous suspensions of precipitated ca. 40 nm wide and 10 nm thick Mg(OH)(2) nanoparticles and dewatering (calcining) at 400 degrees C, resulting in a 25 times more voluminous powder compared to conventionally dried nanoparticles. This powder handling prior to extrusion melt-processing greatly facilitated the nanocomposite preparation since no particle grinding was necessary. Large quantities of particles were prepared (>5 g), and the nanoparticle foams showed improved dispersion in the LDPE matrix with 70% smaller aggregate sizes compared to the conventionally dried and ground nanopowders. The nature of the nanoparticle foams was evaluated in terms of their dispersion on Si-wafers using ultrasonication as a dispersing aid, which showed to be detrimental for the nanoparticle separation into solitary particles and induced severe aggregation of the calcined nanoparticles. The grind-free MgO nanoparticles/LDPE-composite was evaluated by electrical measurement. The prepared composite showed an initial ca. 1.5 orders of magnitude lower charging current at 10(2) s, and a 4.2 times lower charging current after 16 hours compared to unfilled LDPE. The results open a way for improved insulation to be implemented in the future high-voltage cable system and present a new promising nanoparticle powder handling technique that can be used on a large scale.

  • 18.
    Pourmand, Payam
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Lisa
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Furo, Istvan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Reitberger, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Effect of gamma radiation on carbon-black-filled EPDM seals in water and air2017In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 146, p. 184-191Article in journal (Refereed)
    Abstract [en]

    The effects of gamma radiation in air and water on a highly filled carbon-black-containing EPDM seal, used in transportation valves for old-fuel rods, were investigated. Samples were irradiated at a dose rate of 7 kGy h(-1) until total doses of 0.35, 1.4, 2.1 and 3.5 MGy were reached. The doses were chosen to correspond to 1, 4, 6 and 10 years of service. Infrared spectroscopy, mechanical indenter and NMR relaxation time (T-2) measurements indicated an oxidative crosslinking of the seal, which increased monotonically with the dose. The effects were larger in air than in water, and in air, diffusion-limited oxidation was observed. The compression set increased with increasing dose of radiation and was the highest for seals irradiated in air. The water uptake into the rubber, which was always lower than 1 wt.%, increased with the dose, showing the effect of increased polarity by the oxidation of the rubber.

  • 19.
    Pourmand, Payam
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Lisa
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Massoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Furó, Istvan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Reitberger, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Effect of radiation on carbon-black-filled EPDM seals in water and air2017Manuscript (preprint) (Other academic)
    Abstract [en]

    The effects of γ-radiation in air and water on a highly filled carbon-black-containing EPDM seal, used in transportation valves for old-fuel rods, were investigated. Samples were irradiated at a dose rate of 7 kGy/h until total doses of 0.35, 1.4, 2.1 and 3.5 MGy were reached. The doses were chosen to correspond to 1, 4, 6 and 10 years in service. Infrared spectroscopy, mechanical indenter and NMR relaxation time (T2) measurements indicated an oxidative crosslinking of the seal, which increased monotonically with the dose. The effects were larger in air than in water, and in air, diffusion-limited oxidation was observed. The compression set increased with increasing doses of radiation and was the highest for seals irradiated in air. The water uptake into the rubber, which was always lower than 1 wt%, increased with the dose, showing the effects of increased polarity/oxidation of the rubber.

  • 20.
    Pourrahimi, A. M.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Liu, D.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications2015In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 33, p. 17190-17200Article in journal (Refereed)
    Abstract [en]

    Novel methods based on orienting and coating of ZnO nanoparticles were studied in order to obtain uniform, nano-sized and ultra-pure ZnO grains/particles after heat treatment. A 1 nm zinc-hydroxy-salt complex layer on the nanoparticle surfaces was revealed by thermogravimetry and infrared spectroscopy. This 'phase' gradually decomposed into ZnO during the heat treatment while sintering occurred above 600 degrees C, as revealed by scanning-and transmission-electron microscopy. The c-axis alignment of the nanoparticles provided smaller pores than those associated with non-oriented nanoparticles, presenting the means to obtain high-density ceramics. The orientation resulted in a smaller grain size after heat treatment than that of the nonaligned nanoparticles. Another method that involved three steps - silane coating, heat treatment and silica layer etching - was used to remove the ionic species from the nanoparticle surface while preserving its hydroxylated surface. These ultra-pure nanoparticles are expected to be key components in the development of HVDC insulation polyethylene nanocomposites.

  • 21.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    The synthesis, surface modification and use of metal-oxide nanoparticles in polyethylene for ultra-low transmission-loss HVDC cable insulation materials2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Polyethylene composites which contain low concentrations of metal-oxide nanoparticles e.g. ZnO and MgO are emerging materials for the use in insulations of extruded high-voltage direct-current (HVDC) cables. The challenge in the development of the composites with ultra-low electrical conductivity is to synthesize uniform and high-purity metal-oxide nanoparticles, which are functionalized with hydrophobic groups in order to make them compatible with polyethylene. The thesis reports different approaches to prepare this new generation of insulation materials.

    Different reaction parameters/conditions – zinc salt precursor, precursor concentrations and reaction temperature – were varied in order to tailor the size and morphology of the ZnO nanoparticles. It was shown that different particle sizes and particle morphologies could be obtained by using different zinc salt precursors (acetate, nitrate, chloride or sulphate). It was shown that 60 °C was a suitable reaction temperature in order to yield particles with different morphologies ranging from nano-prisms to flower-shaped superstructures. For removal of reaction residuals from the particles surfaces, a novel cleaning method based on ultrasonication was developed, which was more efficient than traditional water-replacement cleaning. After cleaning, the presence of one atomic layer of zinc-hydroxy-salt complex (ZHS) on the nanoparticle surfaces was suggested by thermogravimetry and infrared spectroscopy. A method involving three steps – silane coating, heat treatment and silica layer etching – was used to remove the last trace of the ZHS species from the nanoparticle surface while preserving its clean and active hydroxylated surface. The surface chemistry of these nanoparticles was further tailored from hydroxyl groups to hydrophobic alkyl groups with different lengths by reactions involving methyltrimethoxysilane (C1), octyltriethoxysilane (C8) and octadecyltrimethoxysilane (C18).

    MgO nanoparticles were prepared by aqueous precipitation of Mg(OH)2 followed by a partial transformation to MgO nanoparticles via heat treatment at 400 °C. The surface regions of the MgO nanoparticles convert into a hydroxide phase in humid media. A novel method to obtain large surface area MgO nanoparticles with a remarkable inertness to humidity was also presented. The method involved three steps:  (a) thermal decomposition of Mg(OH)2 at 400 °C; (b) silicone oxide coating of the nanoparticles to prevent inter-particle sintering and (c) a high temperature heat treatment at 1000 °C. These MgO nanoparticles showed essentially no sign of formed hydroxide phase even after extended exposure to humid air.

    The functionalized metal-oxide nanoparticles showed only a minor adsorption of phenolic antioxidant, which is important in order to obtain nanocomposites with an adequate long-term stability. Tensile testing and scanning electron microscopy revealed that the surface-modified metal-oxide nanoparticles showed improved dispersion and interfacial adhesion in the polyethylene matrix with reference to that of unmodified metal-oxide nanoparticles. The highly “efficient” interfacial surface area induced by these modified nanoparticles created the traps for charge carriers at the polymer/particle interface thus reducing the DC conductivity by more than 1 order of magnitude than that of the pristine polyethylene.

  • 22.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, Tuan A
    Chalmers.
    Liu, Dongming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K H
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gubanski, Stanislaw
    Chalmers.
    Olsson, Richard T
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Highly Efficient Interfaces in Nanocomposites Based on Polyethylene and ZnO Nano/Hierarchical Particles: A Novel Approach toward Ultralow Electrical Conductivity Insulations.2016In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, no 39, p. 8651-8657Article in journal (Refereed)
    Abstract [en]

    Polyethylene nanocomposites based on functionalized ZnO nano/hierarchical particles with highly effective interfacial surface area are presented, for the next generation of ultralow transmission-loss high-voltage DC insulating materials.

  • 23.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Liu, Dongming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Aqueous synthesis of (21̅0) oxygen terminated defect free hierarchical ZnO particles and their heat treatment for enhanced reactivity2016In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 42, p. 11002-11013Article in journal (Refereed)
    Abstract [en]

    A controlled aqueous growth of 1 µm flower-shaped ZnO particles with a hierarchical subset of exposed nano-sheets represented by {21̅0} crystal faces, followed by annealing at temperatures up to 1000 °C, is presented. The flower-shaped particles showed superior photocatalytic performance compared to the crystal faces of 20 nm ZnO nanoparticles. The photocatalytic reaction rate of the flower-shaped particles before annealing was 2.4 times higher per m2 compared with that of the nanoparticles with double specific surface area. Crystal surface defects and nano-sized pores within the flower-shaped particles were revealed by porosity measurement and electron microscopy. A heat treatment at 400 °C was found to be optimal for removal of nanoporosity/surface defects and impurities while retaining the hierarchical superstructure. The heat treatment resulted in a photo-degradation efficiency that increased by an additional 43 %, although the specific surface area decreased from 16.7 to 13.0 m2g-1. The enhanced photocatalytic effect remained intact under both acidic and alkaline environments owing to the {21̅0} crystal surfaces, which were less prone to dissolution than the nanoparticles. The photocatalytic performance relied on primarily three factors: the removal of surface impurities, the oxygen termination of the {21̅0} crystal faces, and the promotion of charge carrier lifetime by removal of lattice defects acting as recombination centres. The synthesis presented is an entirely hydrocarbon- and surfactant free ('green') preparation scheme, and the formation of the flower-shaped particles was favored solely by optimization of the reaction temperature after the correct nitrate salts precursor concentrations had been established.

  • 24.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Liu, Dongming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Martinez Abad, A.
    Lagaron, J. -M
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Water-based synthesis and cleaning methods for high purity ZnO nanoparticles - comparing acetate, chloride, sulphate and nitrate zinc salt precursors2014In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, no 67, p. 35568-35577Article in journal (Refereed)
    Abstract [en]

    A low temperature (60 degrees C) aqueous synthesis method of high purity ZnO nanoparticles intended as fillers for ultra-low electrical conductivity insulations is described. Particles were prepared under identical conditions from different zinc salts based on nitrate, chloride, sulphate or acetate to compare their abilities to form high yields of sub-50 nm particles with narrow size distribution. The acetate salt gave uniform 25 nm ZnO particles with a conical prism shape. The chloride and sulphate derived particles showed mixed morphologies of nanoprisms and submicron petals, whereas the nitrate salt yielded prisms assembled into well-defined flower shapes with spiky edges. The micron-sized flower shapes were confirmed by Xray diffraction to consist of the smaller prism units. Photoluminescence spectroscopy showed emission in the blue-violet region with little variation depending on precursor salt, suggesting that the spectra were dependent on the primary nanoprism formation and rather independent of the final particle morphology. Microscopy revealed that the salt residuals after the reaction showed different affinity to the particle surfaces depending on the type of salt used, with the acetate creating ca. 20 nm thick hydrated shells; and in falling order of affinity: chloride, sulphate and nitrate. An acetate ion shielding effect during the synthesis was therefore assumed, preventing nanoparticle fusion during growth. Varying the concentrations of the counter-ions confirmed the shielding and only the acetate anions showed an ability to stabilize solitary nanoprisms formation in reaction yields from 2 to 10 g L-1. Ultrasonic particle surface cleaning was significantly more efficient than water replacement, resulting in a stable aqueous dispersion with a high zeta potential of 38.9 mV at pH 8.

  • 25.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 4, article id 1703624Article in journal (Refereed)
    Abstract [en]

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite.

  • 26.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Liu, Dongming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, Tuan Anh
    Gubanski, Stanislaw
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture Resistant MgO Nanoparticles2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 23, p. 14824-14835Article in journal (Refereed)
    Abstract [en]

    The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 degrees C) thermal decomposition of Mg(OH)(2), (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 degrees C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)(2). The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface.

  • 27.
    Pourrahimi, Amir Massoud
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden.
    Andersson, Richard L.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tjus, Kåre
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Björk, A.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Making an ultralow platinum content bimetallic catalyst on carbon fibres for electro-oxidation of ammonia in wastewater2019In: Sustainable Energy and Fuels, ISSN 2398-4902, Vol. 3, no 8, p. 2111-2124Article in journal (Refereed)
    Abstract [en]

    Electrocatalysis of wastewater containing ammonia is a promising alternative to chemical and biological water purification for several reasons, one being that energy-rich hydrogen gas is generated as a by-product while the reaction can be strictly controlled to meet demands. An objective has been to reduce the loading of expensive platinum (Pt) in the catalyst electrodes, and to reduce the poisoning of the metal surface during the electrolysis. Herein, the co-deposition of a copper-platinum (Cu-Pt) bimetallic alloy onto carbon filaments, stripped from their polymeric coating, is shown to give an electrocatalytic performance superior to that of pure Pt at a content of less than 3 wt% Pt. The key to the enhanced performance was to take advantage of micrometer-sized carbon filaments to distribute a very large bimetallic alloy surface uniformly over the filaments. The Cu-Pt-alloy-coated filaments also suffer less electrode poisoning than pure Pt, and are bonded more strongly to the carbon fibre due to better mechanical interlocking between the bimetallic alloy and the carbon filaments. High-resolution electron microscopy studies combined with a tuned electro-deposition process made it possible to tailor the catalyst micro/nano morphology to reach a uniform coverage, surrounding the entire carbon filaments. The results are promising steps towards large-scale wastewater treatment, combined with clean energy production from regenerated hydrogen.

  • 28. Strain, I. N.
    et al.
    Wu, Qiong
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Electrospinning of recycled PET to generate strong mesomorphic fibre membranes for smoke filtrationManuscript (preprint) (Other academic)
  • 29. Strain, I. N.
    et al.
    Wu, Qiong
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration2015In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, no 4, p. 1632-1640Article in journal (Refereed)
    Abstract [en]

    Tough fibrous membranes for smoke filtration have been developed from recycled polyethylene terephthalate (PET) bottles by solution electrospinning. The fibre thicknesses were controlled from 0.4 to 4.3 mu m by adjustment of the spinning conditions. The highest fibre strength and toughness were obtained for fibres with an average diameter of 1.0 mu m, 62.5 MPa and 65.8 MJ m(-3), respectively. The X-ray diffraction (XRD) patterns of the fibres showed a skewed amorphous halo, whereas the differential scanning calorimetry (DSC) results revealed an apparent crystallinity of 6-8% for the 0.4 and 1 mu m fibres and 0.2% crystallinity for the 4.3 mu m fibres. Heat shrinkage experiments were conducted by exposing the fibres to a temperature above their glass transition temperature (T-g). The test revealed a remarkable capability of the thinnest fibres to shrink by 50%, which was in contrast to the 4.3 mu m fibres, which displayed only 4% shrinkage. These thinner fibres aka showed a significantly higher glass transition temperature (+15 degrees C) than that of the 4.3 mu m fibres. The results suggested an internal morphology with a high degree of molecular orientation in the amorphous segments along the thinner fibres, consistent with a constrained mesomorphic phase formed during their rapid solidification in the electric field. Air filtration was demonstrated with cigarette smoke as a model substance passed through the fibre mats. The 0.4 mu m fibres showed the most effective smoke filtration and a capacity to absorb 43x its own weight in smoke residuals. whereas the 1 mu m fibres showed the best combination of filtration capacity (32x) and mechanical robustness. The use of recycled PET in the form of nanofibres is a novel way of turning waste into higher-value products.

1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf