Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahmad, Arslan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Brabant Water NV, 5200 BC 's-Hertogenbosch, The Netherlands.
    Evaluation and optimization of advanced oxidation coagulation filtration (AOCF) to produce drinking water with less than 1 μg/L of arsenic2014Rapport (Annet vitenskapelig)
    Abstract [en]

    Arsenic is an extremely poisonous element. It has been reported to cause contamination of drinking water sources in many parts of the world. The current drinking water permissible limit for arsenic in the European Union is 10 μg/L. The World Health Organization has a general rule that no substance may have a higher lifetime risk of more than 1 in 100,000. However, several studies on toxicity of arsenic suggest that purely based on health effects the arsenic limit of 10 μg/L is not sufficient. The main goal of this research was to develop an efficient arsenic removal technology that could be able to produce drinking water with an arsenic concentration of less than 1 μg/L. For this purpose, an innovative three step technique, Advanced Oxidation - Coagulation - Filtration (AOCF), was investigated through bench-scale and pilot scale experiments in the Netherlands at the water treatment plant of Dorst. Firstly, prior to the investigations on AOCF, the existing arsenic removal at the water treatment plant was investigated. Secondly, through a series of bench-scale experiments, the optimum type of coagulant, its combination dose with the selected chemical oxidant and optimum process pH were determined. Eventually, the partially optimized technique from the bench-scale was implemented at the pilot scale physical model of water treatment plant Dorst where AOCF was evaluated for arsenic removal and its effect on the removal of other common undesirable groundwater constituents. The optimized AOCF technology consistently removed arsenic from groundwater to below 1 ug/L when implemented at pilot scale. The overall effluent quality also remained acceptable. The method is efficient with both types of filtration media tested in this research i.e., virgin sand and metal oxide coated sand, however virgin sand media showed slightly better arsenic removal efficiency.

  • 2.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik, Vatten- och miljöteknik.
    Arsenic in Drinking Water: Is 10 μg/L a Safe Limit?2019Inngår i: Current Pollution Reports, ISSN 2198-6592, Vol. 5, nr 1Artikkel i tidsskrift (Fagfellevurdert)
  • 3.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
    Environmental arsenic in a changing world2019Inngår i: Groundwater for Sustainable Development, ISSN 2352-801X, Vol. 8, s. 169-171Artikkel i tidsskrift (Fagfellevurdert)
  • 4.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik, Hållbarhet och miljöteknik. KWR Water Cycle Res Inst, Nieuwegein, Netherlands.;WUR, Dept Environm Technol, Wageningen, Netherlands..
    Cornelissen, Emile
    KWR Water Cycle Res Inst, Nieuwegein, Netherlands.;Nanyang Technol Univ, Nanyang Environm & Water Res Inst, Singapore Membrane Technol Ctr, Singapore, Singapore.;Univ Ghent, Particle & Interfacial Technol Grp, Ghent, Belgium..
    van de Wetering, Stephan
    Brabant Water NV Breda, Breda, Netherlands..
    van Dijk, Tim
    Brabant Water NV Breda, Breda, Netherlands..
    van Genuchten, Case
    Univ Utrecht, Fac Geosci, Dept Earth Sci Geochem, Utrecht, Netherlands..
    Bundschuh, Jochen
    Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld, Australia.;Univ Southern Queensland, Deputy Vice Chancellors Off Res & Innovat, Toowoomba, Qld, Australia.;Univ Southern Queensland, Fac Hlth Engn & Sci, Toowoomba, Qld, Australia..
    van der Wal, Albert
    WUR, Dept Environm Technol, Wageningen, Netherlands.;Evides Water Co NV Rotterdam, Rotterdam, Netherlands..
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Univ Southern Queensland, Int Ctr Appl Climate Sci, West St, Toowoomba, Qld, Australia..
    Arsenite removal in groundwater treatment plants by sequential Permanganate-Ferric treatment2018Inngår i: JOURNAL OF WATER PROCESS ENGINEERING, ISSN 2214-7144, Vol. 26, s. 221-229Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Dutch drinking water sector is actively investigating methods to reduce arsenic (As) to < 1 mu g/L in drinking water supply. We investigated (1) the effectiveness of sequential permanganate (MnO4-)-ferric (Fe(III)) dosing during aeration-rapid sand filtration to achieve < 1 mu g/L As (2) the influence of MnO4--Fe(III) dosing on preestablished removal patterns of As(III), Fe(II), Mn(II) and NH4+ in rapid sand filters and (3) the influence of MnO4--Fe(III) dosing on the settling and molecular-scale structural properties of the filter backwash solids. We report that MnO4--Fe(III) dosing is an effective technique to improve arsenite [As(III)] removal at groundwater treatment plants. At a typical aeration-rapid sand filtration facility in the Netherlands effluent As concentrations of < 1 mu g/L were achieved with 1.2 mg/L MnO4--and 1.8 mg/L Fe(III). The optimized combination of MnO4-and Fe(III) doses did not affect the removal efficiency of Fe(II), Mn(II) and NH4+ in rapid sand filters, however, the removal patterns of Fe(II) and Mn(II) in rapid sand filter were altered, as well as the settling behaviour of backwash solids. The characterization of backwash solids by Fe K-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) showed that the changed settling velocity of backwash solids with MnO4-Fe(III) in place was not due to changes in the molecular-scale structure of Fe-precipitates that constitute the major portion of the backwash solids.

  • 5.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Hoofd Ingenieursbureau, Brabant Water N.V., 's-Hertogenbosch, Netherlands .
    Van De Wetering, S.
    Groenendijk, M.
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
    Advanced Oxidation-Coagulation-Filtration (AOCF) - An innovative treatment technology for targeting drinking water with <1 μg/L of arsenic2014Inngår i: One Century of the Discovery of Arsenicosis in Latin America (1914-2014): As 2014 - Proceedings of the 5th International Congress on Arsenic in the Environment, CRC Press, 2014, s. 817-819Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Advanced Oxidation-Coagulation-Filtration (AOCF) has been investigated for producing drinking water with less than 1 μg L-1 of As through a series of bench scale and pilot scale experiments. At bench scale, the suitable coagulant, its combination dose with KMnO4 oxidant, the optimum process pH and kinetics of As removal were determined. The optimized AOCF technique was capable of consistently reducing the As concentration to below 1 μg L-1 when implemented at pilot scale and did not adversely affect the already existing removal processes of Fe, Mn and NH4 +. Dual media filter solved the filter run time reduction issue.

  • 6.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. KWR Water Cycle Res Inst, Nieuwegein, Netherlands.;WUR, Dept Environm Technol, Wageningen, Netherlands.;Evides Water Co NV, Rotterdam, Netherlands..
    van der Wal, Albert
    WUR, Dept Environm Technol, Wageningen, Netherlands.;Evides Water Co NV, Rotterdam, Netherlands..
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Univ Southern Queensland, Int Ctr Appl Climate Sci, Toowoomba, Qld, Australia..
    van Genuchten, Case M.
    Geol Survey Denmark & Greenland GEUS, Geochem Dept, Copenhagen, Denmark.;Univ Utrecht, Fac Geosci, Dept Earth Sci Geochem, Utrecht, Netherlands..
    Characteristics of Fe and Mn bearing precipitates generated by Fe(II) and Mn(II) co-oxidation with O-2, MnO4 and HOCl in the presence of groundwater ions2019Inngår i: Water Research, ISSN 0043-1354, E-ISSN 1879-2448, Vol. 161, s. 505-516Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, we combined macroscopic measurements of precipitate aggregation and chemical composition (Mn/Fe solids ratio) with Fe and Mn K-edge X-ray absorption spectroscopy to investigate the solids formed by co-oxidation of Fe(II) and Mn(II) with O-2, MnO4, and HOCl in the presence of groundwater ions. In the absence of the strongly sorbing oxyanions, phosphate (P) and silicate (Si), and calcium (Ca), O-2 and HOCl produced suspensions that aggregated rapidly, whereas co-oxidation of Fe(II) and Mn(II) by MnO4 generated colloidally stable suspensions. The aggregation of all suspensions decreased in P and Si solutions, but Ca counteracted these oxyanion effects. The speciation of oxidized Fe and Mn in the absence of P and Si also depended on the oxidant, with O-2 producing Mn(III)-incorporated lepidocrocite (Mn/Fe = 0.01-0.02 mol/mol), HOCl producing Mn(III)-incorporated hydrous ferric oxide (HFO) (Mn/Fe = 0.08 mol/mol), and MnO4 producing poorly-ordered MnO2 and HFO (Mn/Fe > 0.5 mol/mol). In general, the presence of P and Si decreased the crystallinity of the Fe(III) phase and increased the Mn/Fe solids ratio, which was found by Mn K-edge XAS analysis to be due to an increase in surface-bound Mn(II). By contrast, Ca decreased the Mn/Fe solids ratio and decreased the fraction of Mn(II) associated with the solids, suggesting that Ca and Mn(II) compete for sorption sites. Based on these results, we discuss strategies to optimize the design (i.e. filter bed operation and chemical dosing) of water treatment plants that aim to remove Fe(II) and Mn(II) by co-oxidation.

  • 7.
    Ahmad, Arslan
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Department of Environmental Technology, Wageningen University and Research (WUR), Wageningen, Netherlands.
    van der Wens, Patrick
    Brabant Water NV Breda, Breda, Netherlands..
    Baken, Kirsten
    KWR Water Cycle Res Inst, Groningenhaven 7, NL-3433 PE Nieuwegein, Netherlands..
    de Waal, Luuk
    KWR Water Cycle Res Inst, Groningenhaven 7, NL-3433 PE Nieuwegein, Netherlands..
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik.
    Stuyfzand, Pieter
    KWR Water Cycle Res Inst, Groningenhaven 7, NL-3433 PE Nieuwegein, Netherlands.;Delft Univ Technol, Dept Geosci & Engn, Delft, Netherlands..
    Arsenic reduction to < 1 mu g/L in Dutch drinking water2020Inngår i: Environment International, ISSN 0160-4120, E-ISSN 1873-6750, Vol. 134, artikkel-id 105253Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Arsenic (As) is a highly toxic element which naturally occurs in drinking water. In spite of substantial evidence on the association between many illnesses and chronic consumption of As, there is still a considerable uncertainty about the health risks due to low As concentrations in drinking water. In the Netherlands, drinking water companies aim to supply water with As concentration of < 1 mu g/L - a water quality goal which is tenfold more stringent than the current WHO guideline. This paper provides (i) an account on the assessed lung cancer risk for the Dutch population due to pertinent low-level As in drinking water and cost-comparison between health care provision and As removal from water, (ii) an overview of As occurrence and mobility in drinking water sources and water treatment systems in the Netherlands and (iii) insights into As removal methods that have been employed or under investigation to achieve As reduction to < 1 mu g/L at Dutch water treatment plants. Lowering of the average As concentration to < 1 mu g/L in the Netherlands is shown to result in an annual benefit of 7.2-14 M(sic). This study has a global significance for setting drinking water As limits and provision of safe drinking water.

  • 8.
    Litter, Marta I.
    et al.
    Consejo Nacl Invest Cient & Tecn, Comis Nacl Energia Atom, Gerencia Quim, Av Gral Paz 1499, RA-1650 San Martin, Buenos Aires, Argentina.;Univ Nacl Gen San Martin, Inst Invest & Ingn Ambiental, Campus Miguelete,Av 25 Mayo & Francia, RA-1650 San Martin, Buenos Aires, Argentina.;Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina..
    Ingallinella, Ana M.
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Ctr Ingn Sanit, Riobamba 245 Bis, RA-2000 Rosario, Santa Fe, Argentina..
    Olmos, Valentina
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Buenos Aires, Fac Farm & Bioquim, Catedra Toxicol & Quim Legal, Junin 956,7th Floor, RA-1113 Buenos Aires, DF, Argentina..
    Savio, Marianela
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Av Uruguay 151, RA-6300 Santa Rosa, La Pampa, Argentina.;Inst Ciencias Tierra & Ambientales Pampa INCITAP, Mendoza 109, RA-6302 Santa Rosa, La Pampa, Argentina..
    Difeo, Gonzalo
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;INTI Quim, Ave Gen Paz 5445, RA-1650 San Martin, Buenos Aires, Argentina..
    Botto, Lia
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;UNLP, CICPBA, CCT La Plata, Ctr Quim Inorgan CEQUINOR, La Plata, Buenos Aires, Argentina.;Univ Nacl La Plata, CONICET La Plata, Consejo Nacl Invest Cient & Tecn, Comis Invest Cient Prov Buenos Aires, Bv 120 1465, RA-1900 La Plata, Buenos Aires, Argentina..
    Farfan Torres, Elsa Monica
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Nacl Salta, Inst Invest Ind Quim INIQUI, Av Bolivia 5150, RA-4400 Salta, Argentina..
    Taylor, Sergio
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Autoridad Agua, Calle 5 366,B1902, La Plata, Buenos Aires, Argentina..
    Frangie, Sofia
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;INTI Quim, Ave Gen Paz 5445, RA-1650 San Martin, Buenos Aires, Argentina..
    Herkovits, Jorge
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Consejo Nacl Invest Cient & Tecn, Fdn PROSAMA, Inst Ciencias Ambientales & Salud, Paysandu 752, RA-1405 Buenos Aires, DF, Argentina..
    Schalamuk, Isidoro
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Nacl La Plata, Comis Invest Cient Prov Buenos Aires, Inst Recursos Minerales, 64 & 120, RA-1900 La Plata, Buenos Aires, Argentina..
    Jose Gonzalez, Maria
    Univ Nacl La Plata, Comis Invest Cient Prov Buenos Aires, Inst Recursos Minerales, 64 & 120, RA-1900 La Plata, Buenos Aires, Argentina..
    Berardozzi, Eliana
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;Univ Nacl La Plata, Fac Ingn, Dept Hidraul, INIFTA CCT La Plata, Calle 47 200, RA-1900 La Plata, Buenos Aires, Argentina..
    Garcia Einschlag, Fernando S.
    Consejo Nacl Invest Cient & Tecn, Red Seguridad Alimentaria, Godoy Cruz 2290, RA-1425 Buenos Aires, DF, Argentina.;UNLP, CONICET, CCT La Plata, Inst Invest Fisicoquim Teor & Aplicadas,INIFTA, Diagonal 113 & 64,Sucursal 4,Casilla Correo 16, RA-1900 La Plata, Buenos Aires, Argentina..
    Bhattacharya, Prosun
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. Univ Southern Queensland, West St, Darling Hts, Qld 4350, Australia..
    Ahmad, Arslan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik. KWR Water Cycle Res Inst, Groningenhaven 7, NL-3433 PE Nieuwegein, Netherlands.;WUR, Dept Environm Technol, NL-6708 PB Wageningen, Netherlands..
    Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices2019Inngår i: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 690, s. 778-789Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An overview about the presence of arsenic (As) in groundwaters of Argentina, made by a transdisciplinary group of experts is presented. In this second part, the conventional and emerging technologies for As removal, management of wastes, and the initial investment costs of the proposed technologies, with emphasis on developments of local groups are described. Successful examples of real application of conventional and emerging technologies for As removal in waters for human consumption, for medium, small and rural and periurban communities are reported. In the country, the two most applied technologies for arsenic removal at a real scale are reverse osmosis and coagulation-adsorption-filtration processes using iron or aluminum salts or polyelectrolytes as coagulants. A decision tree to evaluate the possible technologies to be applied, based on the population size, the quality of the water and its intended use, is presented, including preliminary and indicative investment costs. Finally, a section discussing the treatment and final disposal of the liquid, semiliquid and solid wastes, generated by the application of the most used technologies, is included. Conclusions and recommendations, especially for isolated rural and periurban regions, have been added.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf