kth.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hedhammar, My
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Stenvall, Maria
    KTH, School of Biotechnology (BIO), Proteomics.
    Lönneborg, Rosa
    KTH, School of Biotechnology (BIO), Proteomics.
    Nord, Olof
    KTH, School of Biotechnology (BIO), Proteomics.
    Sjölin, Olle
    KTH, School of Biotechnology (BIO), Proteomics.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    A Novel flow cytometry-based method for analysis of expression levels in Escherichia coli, giving information about precipitated and soluble protein2005In: Journal of Biotechnology, ISSN 0168-1656, E-ISSN 1873-4863, Vol. 119, no 2, p. 133-146Article in journal (Refereed)
    Abstract [en]

    A high throughput method for screening of protein expression is described. By using a flow cytometer, levels of both soluble and precipitated protein can simultaneously be assessed in vivo. Protein fragments were fused to the N-terminus of enhanced GFP and the cell samples were analysed using a flow cytometer. Data concerning whole cell fluorescence and light scattering was collected. The whole cell fluorescence is probing intracellular concentrations of soluble fusion proteins. Concurrently, forward scattered light gives data about inclusion body formation, valuable information in process optimisation. To evaluate the method, the cells were disrupted, separated into soluble and non-soluble fractions and analysed by gel electrophoresis. A clear correlation between fluorescence and soluble target protein was shown. Interestingly, the distribution of the cells regarding forward scatter (standard deviation) correlates with the amount of inclusion bodies formed. Finally, the newly developed method was used to evaluate two different purification tags, His(6) and Z(basic), and their effect on the expression pattern.

  • 2.
    Ottosson, Jenny
    et al.
    KTH, Superseded Departments (pre-2005), Biotechnology.
    Steen, Johanna
    KTH, Superseded Departments (pre-2005), Biotechnology.
    Stenvall, Maria
    KTH, Superseded Departments (pre-2005), Biotechnology.
    Tegel, Hanna
    KTH, Superseded Departments (pre-2005), Biotechnology.
    Uhlén, Mathias
    KTH, Superseded Departments (pre-2005), Biotechnology.
    Hober, Sophia
    KTH, Superseded Departments (pre-2005), Biotechnology.
    High throughput protein expression and purification for antibody proteomics2004In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 3, no 10, p. S169-S169Article in journal (Other academic)
  • 3.
    Stenvall, Maria
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Steen, Johanna
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    High-throughput solubility assay for purified recombinant protein immunogens2005In: Biochimica et Biophysica Acta - Proteins and Proteomics, ISSN 1570-9639, E-ISSN 1878-1454, Vol. 1752, no 1, p. 6-10Article in journal (Refereed)
    Abstract [en]

    A high-throughput assay is described for analysis of the solubility of purified recombinant proteins. The assay is based on affinity purification of proteins in the presence of chaotropic agents followed by a dilution and incubation step to investigate the solubility in the absence of high concentrations of such agents. The assay can be performed in a 96-well format, which makes it well suited for high-throughput applications. For 125 recombinant proteins expressed as part of an antibody-based proteomics effort, experimental solubility data were compared to calculated hydrophobicity values based on the amino acid sequence of each protein. This comparison showed only weak correlation between the theoretical and experimental values, which emphasizes the importance of experimental assays to determine the solubility of recombinant proteins.

  • 4.
    Sundqvist, Gustav
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Stenvall, Maria
    KTH, School of Biotechnology (BIO).
    Berglund, Helena
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO).
    Brumer, Harry
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    A general, robust method for the quality control of intact proteins using LC–ESI-MS2007In: Journal of chromatography. B, ISSN 1570-0232, E-ISSN 1873-376X, Vol. 852, no 1-2, p. 188-194Article in journal (Refereed)
    Abstract [en]

    A simple and robust method for the routine quality control of intact proteins based on liquid chromatography coupled to electrospray ionization mass spectrometry (LC-ESI-MS) is presented. A wide range of prokaryotic and eukaryotic proteins expressed recombinantly in Escherichia coli or Pichia pastoris has been analyzed with medium- to high-throughput with on-line desalting from multi-well sample plates. Particular advantages of the method include fast chromatography and short cycle times, the use of inexpensive trapping/desalting columns, low sample carryover, and the ability to analyze proteins with masses ranging from 5 to 100 kDa with greater than 50 ppm accuracy. Moreover, the method can be readily coupled with optimized chemical reduction and alkylation steps to facilitate the analysis of denatured or incorrectly folded proteins (e.g., recombinant proteins sequestered in E. coli inclusion bodies) bearing cysteine residues, which otherwise form intractable multimers and non-specific adducts by disulfide bond formation.

  • 5.
    Tegel, Hanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Steen, Johanna
    KTH, School of Biotechnology (BIO), Proteomics.
    Konrad, Anna
    KTH, School of Biotechnology (BIO), Proteomics.
    Nikidin, Hero
    KTH, School of Biotechnology (BIO), Proteomics.
    Pettersson, Katarina
    KTH, School of Biotechnology (BIO), Proteomics.
    Stenvall, Maria
    KTH, School of Biotechnology (BIO), Proteomics.
    Tourle, Samuel
    KTH, School of Biotechnology (BIO), Proteomics.
    Wrethagen, Ulla
    KTH, School of Biotechnology (BIO), Proteomics.
    Xu, Lan Lan
    KTH, School of Biotechnology (BIO), Proteomics.
    Yderland, Louise
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    High-throughput protein production--lessons from scaling up from 10 to 288 recombinant proteins per week2009In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 4, no 1, p. 51-57Article in journal (Refereed)
    Abstract [en]

    The demand for high-throughput recombinant protein production has markedly increased with the increased activity in the field of proteomics. Within the Human Protein Atlas project recombinantly produced human protein fragments are used for antibody production. Here we describe how the protein expression and purification protocol has been optimized in the project to allow for han- dling of nearly 300 different proteins per week. The number of manual handling steps has been significantly reduced (from 18 to 9) and the protein purification has been completely automated.

  • 6.
    Uhlén, Mathias
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Agaton, Charlotta
    KTH, School of Biotechnology (BIO).
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Amini, Bahram
    KTH, School of Biotechnology (BIO).
    Andersen, Elisabet
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Andersson, Ann-Catrin
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Angelidou, Pia
    KTH, School of Biotechnology (BIO).
    Asplund, Anna
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Asplund, Caroline
    KTH, School of Biotechnology (BIO).
    Berglund, Lisa
    KTH, School of Biotechnology (BIO).
    Bergström, Kristina
    KTH, School of Biotechnology (BIO).
    Brumer, Harry
    KTH, School of Biotechnology (BIO).
    Cerjan, Dijana
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Ekström, Marica
    KTH, School of Biotechnology (BIO).
    Elobeid, Adila
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Eriksson, Cecilia
    KTH, School of Biotechnology (BIO).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO).
    Falk, Ronny
    KTH, School of Biotechnology (BIO).
    Fall, Jenny
    KTH, School of Biotechnology (BIO).
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO).
    Gry Björklund, Marcus
    KTH, School of Biotechnology (BIO).
    Gumbel, Kristoffer
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Halimi, Asif
    KTH, School of Biotechnology (BIO).
    Hallin, Inga
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Hamsten, Carl
    KTH, School of Biotechnology (BIO), Proteomics.
    Hansson, Marianne
    KTH, School of Biotechnology (BIO).
    Hedhammar, My
    KTH, School of Biotechnology (BIO).
    Hercules, Görel
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Kampf, Caroline
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Larsson, Karin
    KTH, School of Biotechnology (BIO).
    Lindskog, Mats
    KTH, School of Biotechnology (BIO).
    Lodewyckx, Wald
    KTH, School of Biotechnology (BIO).
    Lund, Jan
    KTH, School of Biotechnology (BIO).
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO).
    Magnusson, Kristina
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Malm, Erik
    KTH, School of Biotechnology (BIO).
    Nilsson, Peter
    KTH, School of Biotechnology (BIO).
    Ödling, Jenny
    KTH, School of Biotechnology (BIO).
    Oksvold, Per
    KTH, School of Biotechnology (BIO).
    Olsson, Ingmarie
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Öster, Emma
    KTH, School of Biotechnology (BIO).
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO).
    Paavilainen, Linda
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Rimini, Rebecca
    KTH, School of Biotechnology (BIO).
    Rockberg, Johan
    KTH, School of Biotechnology (BIO).
    Runeson, Marcus
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Sköllermo, Anna
    KTH, School of Biotechnology (BIO).
    Steen, Johanna
    KTH, School of Biotechnology (BIO).
    Stenvall, Maria
    KTH, School of Biotechnology (BIO).
    Sterky, Fredrik
    KTH, School of Biotechnology (BIO).
    Strömberg, Sara
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Sundberg, Mårten
    KTH, School of Biotechnology (BIO).
    Tegel, Hanna
    KTH, School of Biotechnology (BIO).
    Tourle, Samuel
    KTH, School of Biotechnology (BIO).
    Wahlund, Eva
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Waldén, Annelie
    KTH, School of Biotechnology (BIO).
    Wan, Jinghong
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Westberg, Joakim
    KTH, School of Biotechnology (BIO).
    Wester, Kenneth
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Wrethagen, Ulla
    KTH, School of Biotechnology (BIO).
    Xu, Lan Lan
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Pontén, Fredrik
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    A human protein atlas for normal and cancer tissues based on antibody proteomics2005In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 4, no 12, p. 1920-1932Article in journal (Refereed)
    Abstract [en]

    Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we report a new publicly available database containing, in the first version, similar to 400,000 high resolution images corresponding to more than 700 antibodies toward human proteins. Each image has been annotated by a certified pathologist to provide a knowledge base for functional studies and to allow queries about protein profiles in normal and disease tissues. Our results suggest it should be possible to extend this analysis to the majority of all human proteins thus providing a valuable tool for medical and biological research.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf