Ändra sökning
Avgränsa sökresultatet
1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Roberson-Johnson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kootstra, Gert
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active Scene Analysis2010Konferensbidrag (Refereegranskat)
  • 2.
    Bergström, Niklas
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Integration of Visual Cues for Robotic Grasping2009Ingår i: COMPUTER VISION SYSTEMS, PROCEEDINGS / [ed] Fritz M, Schiele B, Piater JH, Berlin: Springer-Verlag Berlin , 2009, Vol. 5815, s. 245-254Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set, of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

  • 3.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Multi-Modal Scene Understanding for Robotic Grasping2011Doktorsavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    Current robotics research is largely driven by the vision of creatingan intelligent being that can perform dangerous, difficult orunpopular tasks. These can for example be exploring the surface of planet mars or the bottomof the ocean, maintaining a furnace or assembling a car.   They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, arealready frequently performed by robots. Others are still completelyout of reach. Especially, household robots are far away from beingdeployable as general purpose devices. Although advancements have beenmade in this research area, robots are not yet able to performhousehold chores robustly in unstructured and open-ended environments givenunexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual andmotor capabilities are necessaryfor the robot to perform common tasks in a household scenario. In that context, an essential capability is tounderstand the scene that the robot has to interact with. This involvesseparating objects from the background but also from each other.Once this is achieved, many other tasks becomemuch easier. Configuration of objectscan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and evenstate-of-the-art methods may fail. Given an incomplete, noisy andpotentially erroneously segmented scene model, the questions remain howsuitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of predictionmechanisms that allow it to hypothesize about parts of the sceneit has not yet observed. Additionally, the robot can alsoquantify how uncertain it is about this prediction allowing it toplan actions for exploring the scene at specifically uncertainplaces. We consider multiple modalities includingmonocular and stereo vision, haptic sensing and information obtainedthrough a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modalexploration, grasps can be inferred for each objecthypothesis. Dependent on whether the objects are known, familiar orunknown, different methodologies for grasp inference apply. In thisthesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed andopen-loop manner showing the effectiveness of the proposed methods inreal-world scenarios.

  • 4.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Barck-Holst, Carl
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Hübner, Kai
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ralph, Maria
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Rasolzadeh, Babak
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Song, Dan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    TOWARDS GRASP-ORIENTED VISUAL PERCEPTION FOR HUMANOID ROBOTS2009Ingår i: INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, ISSN 0219-8436, Vol. 6, nr 3, s. 387-434Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A distinct property of robot vision systems is that they are embodied. Visual information is extracted for the purpose of moving in and interacting with the environment. Thus, different types of perception-action cycles need to be implemented and evaluated. In this paper, we study the problem of designing a vision system for the purpose of object grasping in everyday environments. This vision system is firstly targeted at the interaction with the world through recognition and grasping of objects and secondly at being an interface for the reasoning and planning module to the real world. The latter provides the vision system with a certain task that drives it and defines a specific context, i.e. search for or identify a certain object and analyze it for potential later manipulation. We deal with cases of: (i) known objects, (ii) objects similar to already known objects, and (iii) unknown objects. The perception-action cycle is connected to the reasoning system based on the idea of affordances. All three cases are also related to the state of the art and the terminology in the neuroscientific area.

  • 5.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bergström, Niklas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Acting and Interacting in the Real World2011Konferensbidrag (Refereegranskat)
  • 6.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Johnson-Roberson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Strategies for Multi-Modal Scene Exploration2010Ingår i: IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, s. 4509-4515Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a method for multi-modal scene exploration where initial object hypothesis formed by active visual segmentation are confirmed and augmented through haptic exploration with a robotic arm. We update the current belief about the state of the map with the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that through the integration of different sensor modalities, we achieve a more complete scene model. We also show that the prediction of the scene structure leads to a valid scene representation even if the map is not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in simulation and on our robotic platform.

  • 7.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Johnson-Roberson, Matthew
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Leon, Beatriz
    Universitat Jaume I, Castellon, Spain.
    Felip, Javier
    Universitat Jaume I, Castellon, Spain.
    Gratal, Xavi
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bergström, Niklas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Morales, Antonio
    Universitat Jaume I, Castellon, Spain.
    Mind the Gap - Robotic Grasping under Incomplete Observation2011Ingår i: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011, New York: IEEE , 2011, s. 686-693Konferensbidrag (Refereegranskat)
    Abstract [en]

    We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

  • 8.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Grasping Familiar Objects using Shape Context2009Ingår i: ICAR: 2009 14th International Conference on Advanced Robotics, IEEE , 2009, s. 50-55Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present work on vision based robotic grasping. The proposed method relies on extracting and representing the global contour of an object in a monocular image. A suitable grasp is then generated using a learning framework where prototypical grasping points are learned from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labeled synthetic images. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects. Furthermore, we will show how our representation supports the inference of a full grasp configuration.

  • 9.
    Bohg, Jeannette
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Learning grasping points with shape context2010Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 58, nr 4, s. 362-377Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents work on vision based robotic grasping. The proposed method adopts a learning framework where prototypical grasping points are learnt from several examples and then used on novel objects. For representation purposes, we apply the concept of shape context and for learning we use a supervised learning approach in which the classifier is trained with labelled synthetic images. We evaluate and compare the performance of linear and non-linear classifiers. Our results show that a combination of a descriptor based on shape context with a non-linear classification algorithm leads to a stable detection of grasping points for a variety of objects.

  • 10. Bohg, Jeannette
    et al.
    Welke, Kai
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Leon, Beatriz
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Do, Martin
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Song, Dan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Wohlkinger, Walter
    Automation and Control Institute, Technische Universität Wien, Austria.
    Madry, Marianna
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Aldoma, Aitor
    Automation and Control Institute, Technische Universität Wien, Austria.
    Przybylski, Markus
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Asfour, Tamim
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Marti, Higinio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Morales, Antonio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Vincze, Markus
    Automation and Control Institute, Technische Universität Wien, Austria.
    Task-based Grasp Adaptation on a Humanoid Robot2012Ingår i: Proceedings 10th IFAC Symposium on Robot Control, 2012, s. 779-786Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

  • 11.
    Gratal, Xavi
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Scene Representation and Object Grasping Using Active Vision2010Konferensbidrag (Refereegranskat)
  • 12.
    Gratal, Xavi
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Romero, Javier
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Visual servoing on unknown objects2012Ingår i: Mechatronics (Oxford), ISSN 0957-4158, E-ISSN 1873-4006, Vol. 22, nr 4, s. 423-435Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

  • 13.
    Johnson-Roberson, Matthew
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Björkman, Mårten
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Attention-based Active 3D Point Cloud Segmentation2010Ingår i: IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, s. 1165-1170Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we present a framework for the segmentation of multiple objects from a 3D point cloud. We extend traditional image segmentation techniques into a full 3D representation. The proposed technique relies on a state-of-the-art min-cut framework to perform a fully 3D global multi-class labeling in a principled manner. Thereby, we extend our previous work in which a single object was actively segmented from the background. We also examine several seeding methods to bootstrap the graphical model-based energy minimization and these methods are compared over challenging scenes. All results are generated on real-world data gathered with an active vision robotic head. We present quantitive results over aggregate sets as well as visual results on specific examples.

  • 14.
    Johnson-Roberson, Matthew
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Skantze, Gabriel
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Tal-kommunikation.
    Gustafson, Joakim
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Tal-kommunikation.
    Carlson, Rolf
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Tal-kommunikation.
    Enhanced visual scene understanding through human-robot dialog2010Ingår i: Dialog with Robots: AAAI 2010 Fall Symposium, 2010, s. -144Konferensbidrag (Refereegranskat)
  • 15.
    Johnson-Roberson, Matthew
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Skantze, Gabriel
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.
    Gustafsson, Joakim
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.
    Carlson, Rolf
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Rasolzadeh, Babak
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Enhanced Visual Scene Understanding through Human-Robot Dialog2011Ingår i: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE , 2011, s. 3342-3348Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a novel human-robot-interaction framework for robust visual scene understanding. Without any a-priori knowledge about the objects, the task of the robot is to correctly enumerate how many of them are in the scene and segment them from the background. Our approach builds on top of state-of-the-art computer vision methods, generating object hypotheses through segmentation. This process is combined with a natural dialog system, thus including a ‘human in the loop’ where, by exploiting the natural conversation of an advanced dialog system, the robot gains knowledge about ambiguous situations. We present an entropy-based system allowing the robot to detect the poorest object hypotheses and query the user for arbitration. Based on the information obtained from the human-robot dialog, the scene segmentation can be re-seeded and thereby improved. We present experimental results on real data that show an improved segmentation performance compared to segmentation without interaction.

  • 16.
    Leon, Beatriz
    et al.
    Universitat Jaume I, Castellon, Spain.
    Ulbrich, Stefan
    Karlsruher Institut für Technologie (KIT) , Institut für Anthropomatik.
    Diankov, Rosen
    School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.
    Puche, Gustavo
    Universitat Jaume I, Castellon, Spain.
    Przybylski, Markus
    Karlsruher Institut für Technologie (KIT) , Institut für Anthropomatik.
    Morales, Antonio
    Universitat Jaume I, Castellon, Spain.
    Asfour, Tamim
    Karlsruher Institut für Technologie (KIT) , Institut für Anthropomatik.
    Moisio, Sami
    Lappeenranta University of Technology, Department of Information Technology, LAPPEENRANTA, Finland .
    Bohg, Jeannette
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kuffner, James
    School of Computer Science, Carnegie Mellon University, Pittsburgh, USA.
    Dillmann, Rüdiger
    Karlsruher Institut für Technologie (KIT) , Institut für Anthropomatik.
    OpenGRASP: A Toolkit for Robot Grasping Simulation2010Ingår i: Simulation, Modeling, and Programming for Autonomous Robots Second International Conference, SIMPAR 2010, Darmstadt, Germany, November 15-18, 2010 / [ed] Ando, Noriaki and Balakirsky, Stephen and Hemker, Thomas and Reggiani, Monica and von Stryk, Oskar, Berlin / Heidelberg: Springer , 2010, s. 109-120Konferensbidrag (Refereegranskat)
    Abstract [en]

    Simulation is essential for different robotic research fields such as mobile robotics, motion planning and grasp planning. For grasping in particular, there are no software simulation packages, which provide a holistic environment that can deal with the variety of aspects associated with this problem. These aspects include development and testing of new algorithms, modeling of the environments and robots, including the modeling of actuators, sensors and contacts. In this paper, we present a new simulation toolkit for grasping and dexterous manipulation called OpenGRASP addressing those aspects in addition to extensibility, interoperability and public availability. OpenGRASP is based on a modular architecture, that supports the creation and addition of new functionality and the integration of existing and widely-used technologies and standards. In addition, a designated editor has been created for the generation and migration of such models. We demonstrate the current state of OpenGRASP’s development and its application in a grasp evaluation environment.

1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf