Ändra sökning
Avgränsa sökresultatet
1 - 34 av 34
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Chen, Mingming
    et al.
    Tianjin Univ, Sch Chem Engn & Technol, China.
    Zhang, Hongjuan
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Wang, Chengyang
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, China.
    Ceria-carbonate composite for low temperature solid oxide fuel cell: Sintering aid and composite effect2014Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 39, nr 23, s. 12309-12316Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study, the effect of carbonate content on microstructure, relative density, ionic conductivity and fuel cell performance of Ce0.8Sm0.2O1.9-(Li/Na)(2)CO3 (SDC-carbonate, abbr. SCC) composites is systematically investigated. With the addition of carbonate, the nanoparticles of ceria are well preserved after heat-treatment. The relative densities of SCC pellets increase as the carbonate content increases or sintering temperature rises. Especially, the relative density of SCC2 sintered at 900 degrees C is higher than that of pure SDC sintered at 1350 degrees C. Both the AC conductivity and DC oxygen ionic conductivity are visibly improved compared with the single phase SDC electrolyte. Among the composites, SDC-20 wt% (Li/Na)(2)CO3 (SCC20) presents high dispersion, relative small particle size, and the dense microstructure. The optimized microstructure brings the best ionic conductivity and fuel cell performance. It is hoped that the results can contribute the understanding of the role of carbonate in the composite materials and highlight their prospective application.

  • 2.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Development and characterization of functional composite materials for advanced energy conversion technologies2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The solid oxide fuel cell (SOFC) is a potential high efficient electrochemical device for vehicles, auxiliary power units and large-scale stationary power plants combined heat and power application. The main challenges of this technology for market acceptance are associated with cost and lifetime due to the high temperature (700-1000 oC) operation and complex cell structure, i.e. the conventional membrane electrode assemblies. Therefore, it has become a top R&D goal to develop SOFCs for lower temperatures, preferably below 600 oC. To address those above problems, within the framework of this thesis, two kinds of innovative approaches are adopted. One is developing functional composite materials with desirable electrical properties at the reduced temperature, which results of the research on ceria-based composite based low temperature ceramic fuel cell (LTCFC). The other one is discovering novel energy conversion technology - Single-component/ electrolyte-free fuel cell (EFFC), in which the electrolyte layer of conventional SOFC is physically removed while this device still exhibits the fuel cell function. Thus, the focus of this thesis is then put on the characterization of materials physical and electrochemical properties for those advanced energy conversion applications. The major scientific content and contribution to this challenging field are divided into four aspects except the Introduction, Experiments and Conclusions parts. They are:

    1. Continuous developments and optimizations of advanced electrolyte materials, ceria-carbonate composite, for LTCFC. An electrolysis study has been carried out on ceria-carbonate composite based LTCFC with cheap Ni-based electrodes. Both oxygen ion and proton conductance in electrolysis mode are observed. High current outputs have been achieved at the given electrolysis voltage below 600 oC. This study also provides alternative manner for high efficient hydrogen production.
    2.  Compatible and high active electrode development for ceria-carbonate composite electrolyte based LTCFC. A symmetrical fuel cell configuration is intentionally employed. The electro-catalytic activities of novel symmetrical transition metal oxide composite electrode toward hydrogen oxidation reaction and oxygen reduction reaction have been experimentally investigated. In addition, the origin of high activity of transition metal oxide composite electrode is studied, which is believed to relate to the hydration effect of the composite oxide.
    3. A novel all-nanocomposite fuel cell (ANFC) concept proposal and feasibility demonstration. The ANFC is successfully constructed by Ni/Fe-SDC anode, SDC-carbonate electrolyte and lithiated NiO/ZnO cathode at an extremely low in-situ sintering temperature, 600 oC. The ANFC manifests excellent fuel cell performance (over 550 mWcm-2 at 600 oC) and a good short-term operation as well as thermo-cycling stability. All results demonstrated its feasibility and potential for energy conversion.
    4. Fundamental study results on breakthrough research Single-Component/Electrolyte-Free Fuel Cell (EFFC) based on above nanocomposite materials (ion and semi-conductive composite) research activities. This is also the key innovation point of this thesis. Compared with classic three-layer fuel cells, EFFC with an electrolyte layer shows a much simpler but more efficient way for energy conversion. The physical-electrical properties of composite, the effects of cell configuration and parameters on cell performance, materials composition and cell fabrication process optimization, micro electrochemical reaction process and possible working principle were systematically investigated and discussed. Besides, the EFFC, joining solar cell and fuel cell working principle, is suggested to provide a research platform for integrating multi-energy-related device and technology application, such as fuel cell, electrolysis, solar cell and micro-reactor etc.

    This thesis provides a new methodology for materials and system innovation for the fuel cell community, which is expected to accelerate the wide implementation of this high efficient and green fuel cell technology and open new horizons for other related research fields.

  • 3.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Tech-nology, Hubei University, Wuhan, China .
    Afzal, Mohammed
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Tech-nology, Hubei University, Wuhan, China .
    Electrolysis study of ceria-carbonate composite for effective H2 production2013Ingår i: EFC 2013 - Proceedings of the 5th European Fuel Cell Piero Lunghi Conference, 2013, s. 79-80Konferensbidrag (Refereegranskat)
    Abstract [en]

    The hybrid ionic conduction of ceria-carbonate composite is an interesting field that has attracted plenty attention in the past decade. However, it has not reached universal agreement among the researcher. Novel characterization method is still needed to reveal this complex system and benefit the future advanced materials design and development. In this work, the electrolysis operation is employed to investigate the possible ionic conduction behavior of ceria-carbonate. The other goal is to optimize the processing technology to maximum the kinetics rate for efficient hydrogen production. An impressive current density of 1.2 A cm-2 has been achieved at 600 °C under voltage of 1.6 V at the absolute humidity of 3% and oxygen ionic operational mode.

  • 4.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Afzal, Muhammad
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Effective hydrogen production by high temperature electrolysis with ceria-carbonate compositeManuskript (preprint) (Övrigt vetenskapligt)
    Abstract [en]

    The high temperature electrolysis potentially offers an effective approach for large-scale and high purity hydrogen production. Besides, the research on the hybrid oxygen ion/proton conductive behavior is a hot field in the ceria-based composite field. In this present study, single cell assembled by SDC-carbonate electrolyte and Ni-based electrode was fabricated and operated in ceramic electrolysis cells (CECs) model. The effect of the relative humidity and temperature on the electrochemical performance was investigated by electrochemical impedance spectra (EIS) and polarization curves. Under an applied electrolysis voltage of 1.6 V, the maximum consumed current density is 1.2 Acm-2 in oxygen ionic conduction mode. The electrochemical performance in proton conduction mode is comparable to the oxygen ion conduction mode. The results here again demonstrate the hybrid ionic conduction of ceria-carbonate composite, and provide a promising materials system for high efficient hydrogen production.

  • 5.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Chen, Mingming
    Tianjin University, China.
    Wang, Chengyang
    Tianjin University, China.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Pr2NiO4–Ag composite cathode for low temperature solid oxide fuel cells with ceria-carbonate composite electrolyte2012Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 37, nr 24, s. 19388-19394Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pr2NiO4-Ag composite was synthesized and evaluated as cathode component for low temperature solid oxide fuel cells based on ceria-carbonate composite electrolyte. X-ray diffraction analysis reveals that the formation of a single phase K2NiF4-type structure occurs at 1000 °C and Pr2NiO4-Ag composite shows chemically compatible with the composite electrolyte. Symmetrical cells impedance measurements prove that Ag displays acceptable electrocatalytic activity toward oxygen reduction reaction at the temperature range of 500-600 °C. Single cells with Ag active component electrodes present better electrochemical performances than those of Ag-free cells. An improved maximum power density of 695 mW cm-2 was achieved at 600 °C using Pr 2NiO4-Ag composite cathode, with humidified hydrogen as fuel and air as the oxidant. Preliminary results suggest that Pr 2NiO4-Ag composite could be adopted as an alternative cathode for low temperature solid oxide fuel cells.

  • 6.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Ma, Ying
    Wang, Xiaodi
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Understanding the electrochemical mechanism of the core-shell ceria-LiZnO nanocomposite in a low temperature solid oxide fuel cell2014Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 2, nr 15, s. 5399-5407Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ceria based solid solutions have been considered some of the best candidates to develop intermediate/low temperature solid oxide fuel cells (IT/LT-SOFCs, 600-800 degrees C). However, the barrier to commercialization has not been overcome even after numerous research activities due to its inherent electronic conduction in a reducing atmosphere and inadequate ionic conductivity at low temperatures. The present work reports a new type of all-oxide nanocomposite electrolyte material based on a semiconductor, Li-doped ZnO (LixZnO), and an ionic conductor, samarium doped ceria (SDC). This electrolyte exhibits superionic conductivity (>0.1 S cm(-1) over 300 degrees C), net-electron free and excellent electrolytic performances (400-630 mW cm(-2)) between 480 and 550 degrees C. Particularly, defects related to interfacial conduction and the intrinsic and extrinsic properties of ions are analysed. An internal or interfacial redox process on two-phase particles is suggested as a powerful methodology to overcome the internal short-circuit problem of ceria-based single phase materials and to develop new advanced materials for energy related applications. The combination of the above promising features makes the SDC-LiZnO nanocomposite a promising electrolyte for LTSOFCs.

  • 7.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, C.
    Chen, M.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Low temperature ceramic fuel cells using all nano-composite materials2011Ingår i: EFC 2011 - Proceedings of the 4th European Fuel Cell Piero Lunghi Conference and Exhibition, 2011, s. 175-176Konferensbidrag (Refereegranskat)
    Abstract [en]

    Nano-structural components have attracted increasing attention in intermediate/low temperature ceramic fuel cell. We reported here a ceramic fuel cell with a configuration of (Ni/Fe)-NSDC/NSDC/LiNiZnO-NSDC by all nano-composite materials and operated at low temperature range of 500-600°C. The prepared nanocomposite materials are characterized by X-ray diffraction (XRD), Emission scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Electrochemical performances were studied by current -Voltage, power density characteristics and Ac impedance spectroscopy. The short term stability of fuel cell was also investigated in 100 min. The high fuel cell performance and reasonable stability demonstrated that the all nanocomposite fuel cell concept is feasible and may have great potential in future study.

  • 8.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, C.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Low temperature ceramic fuel cells using all nano composite materials2012Ingår i: Nano Energy, ISSN 2211-2855, Vol. 1, nr 4, s. 631-639Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The shift to low operational temperature of solid oxide or ceramic fuel cells has induced many new concepts and novel technologies. In the present study, fuel cell assembled by all nano composite materials - NiO/Fe 2O 3-SDC anode, SDC-carbonate electrolyte and lithiated NiO/ZnO cathode - is investigated. A range of techniques, i.e., X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy as well as polarization measurements are employed to characterize the crystalline structures, morphologies and electrochemical properties of the synthesized nanocomposite materials and cells. Performance comparison is made between single cells with and without a pre-sintering process. Finally, single cell short term stability and thermo cycle behaviors are also examined. Combined the facile fabrication process, relative high performance and reasonable stability, the current all nanocomposite system may be a promising functional system for low temperature ceramic fuel cells.

  • 9.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Chengyang
    Chemical engineering and technology.
    Chen, Mingming
    Di, Jing
    Zheng, Jiaming
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM).
    Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate composite electrolytes for solid oxide fuel cells2011Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 36, nr 16, s. 9987-9993Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ceria-carbonate composite materials have been widely investigated as candidate electrolytes for solid oxide fuel cells operated at 300-600 degrees C. However, fundamental studies on the composite electrolytes are still in the early stages and intensive research is demanded to advance their applications. In this study, the crystallite structure, microstructure, chemical activity, thermal expansion behavior and electrochemical properties of the samaria doped ceria-carbonate (SCC) composite have been investigated. Single cells using the SCC composite electrolyte and Ni-based electrodes were assembled and their electrochemical performances were studied. The SCC composite electrolyte exhibits good chemical compatibility and thermal-matching with Ni-based electrodes. Peak power density up to 916 mW cm(-2) was achieved at 550 degrees C, which was attributed to high electrochemical activity of both electrolyte and electrode materials. A stable discharge plateau was obtained under a current density of 1.5 A cm(-2) at 550 degrees C for 120 min. In addition, the ionic conducting property of the SCC composite electrolyte was investigated using electrochemical impedance spectroscopy technique. It was found that the hybrid-ionic conduction improves the total ionic conductivity and fuel cell performance. These results highlight potential low-temperature application of ceria-carbonate composite electrolytes for solid oxide fuel cells.

  • 10.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Chengyang
    Chen, Mingming
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells2013Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 234, s. 154-174Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    In the last ten years, the research of solid oxide fuel cells (SOFCs) or ceramic fuel cells (CFC) had focused on reducing the working temperature through the development of novel materials, especially the high ionic conductive electrolyte materials. Many progresses on single-phase electrolyte materials with the enhanced ionic conductivity have been made, but they are still far from the criteria of commercialization. The studies of ceria oxide based composite electrolytes give an alternative solution to these problems because of their impressive ionic conductivities and tunable ionic conduction behaviors. Significant advances in the understanding the ceria based composite material and construction of efficient fuel cell systems have been achieved within a short period. This report reviews recent developments of ceria-based composite from different aspects: materials, fundamentals, technologies, fabrication/construction parameters, electrochemistry and theoretical studies. Particular attention is given to ceria-carbonate (nano)composite, including its fuel cell performance, multi-ionic transport properties, advanced applications, corresponding electrode material and stability concerning. Besides, several novel fuel cell (FC) concepts like nanowire FC, all-nanocomposite FC and single-component/electrolyte-free fuel cell (SC-EFFC) are presented. This mini-review emphasizes the promise of ceria-based composites for advanced FC application and highlights the breakthrough of SC-EFFC research for high efficient energy conversion.

  • 11.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Chengyang
    Chemical engineering and technology.
    Di, Jin
    Tianjin University, China.
    Chen, Mingming
    Chemical engineering and technology.
    Zhen, Jiaming
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Study of Ceria-Carbonate Nanocomposite Electrolytes for Low-Temperature Solid Oxide Fuel Cells2012Ingår i: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 12, nr 6, s. 4941-4945Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solidstatereaction, citric acid-nitrate combustion and modified nanocomposite approaches and used aselectrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope,low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical ImpedanceSpectroscopy and fuel cell performance test were employed in characterization of these materials.All powders are nano-size particles with slight aggregation and carbonates are amorphous incomposites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionicconductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyteprepared by modified nanocomposite approach exhibits the best performance in the whole operationtemperature range and achieves a maximum power density of 839 mW cm−2 at 600 C withH2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolytemake it a promising candidate for low-temperature solid oxide fuel cells.

  • 12.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Chengyang
    Osamudiamen, Ose
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Mixed ion and electron conductive composites for single component fuel cells: I. Effects of composition and pellet thickness2012Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 217, s. 164-169Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrochemical performances of single component fuel cells (SCFCs) based on mixed ion and electron conductors have been studied as a function of composition and pellet thickness by polarization curves and electrochemical impedance spectroscopy. The electronic conductor of LNCZO shows conductivities of 21.7 and 5.3 S cm(-1) in H-2 and in air, respectively. SCFC using 40 wt. % of LNCZO and 60 wt. % of ion conductive SDC-Na2CO3 with a thickness of 1.10 mm shows the highest power density of 0.35 W cm(-2) at 550 degrees C. The performance is correlated to the mixed conduction properties (ionic and electronic, p and n-type) and the microstructure of the functional SCFC layer.

  • 13.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Chengyang
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Low temperature Solid Oxide fuel cells using all nanocomposite materials2011Ingår i: Proceedings: 4th European Fuel Cell - Piero Lunghi Conference, Italy: ENEA , 2011, s. 175-176Konferensbidrag (Refereegranskat)
  • 14.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhang, Guoquan
    Chen, Mingming
    Wang, Chengyang
    Di, Jing
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Proton and Oxygen Ionic Conductivity of Doped Ceria-Carbonate Composite by Modified Wagner Polarization2012Ingår i: International Journal of Electrochemical Science, ISSN 1452-3981, E-ISSN 1452-3981, Vol. 7, nr 9, s. 8420-8435Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The impressive ionic conductivity and tunable conduction behaviors have made the ceria-carbonate composite an attractive electrolyte for low temperature ceramic fuel cells. However, the conduction mechanism is not yet well studied. In the present study, both proton and oxygen ion conductivity as well as the transport properties of samaria-doped ceria/ sodium-lithium-carbonate (denoted as SDCLN) composite are investigated by the fuel cell study and the modified Hebb-Wagner polarization measurements. The multi-ionic polarization behaviors and the transfer processes in composite electrolyte under external electrical field are analyzed. A maximum power density of 780 mW cm(-2) and a calculated total ion (proton and oxygen ion) conductivity of 0.153 S cm(-1) are obtained under H-2/air condition at 550 degrees C. The Wagner DC polarization measurements show that the proton conduction dominates the total ionic conductivity. A synergistic effect exists between the charge carriers in the doped ceria-carbonate composite system. An ideal interfacial conduction model is also proposed based on the obtained results.

  • 15.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhang, Hongjuan
    Chen, Mingming
    Wang, Chengyang
    Wang, Hao
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells2013Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 38, nr 26, s. 11398-11405Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, Lithiated NiCuZnOx (LNCZO) composite is synthesized and evaluated as a potential symmetrical electrode for ceria-carbonate composite electrolyte based low temperature ceramic fuel cells. Its crystal structures, the hydrogen oxidation/oxygen reduction electrochemical activities and fuel cell performances are systematically examined on the symmetrical cell configuration. Nano crystallite particles in the form of composite are observed for these oxides. The LNCZO shows relatively high catalytic activities for hydrogen oxidation and oxygen reduction reaction according to the electrochemical impedance spectroscopy measurements. A remarkable low oxygen reduction activation energy of 42 kJ mol(-1) is obtained on the LNCZO/ceria-carbonate composite, demonstrating excellent electro-catalytic activity. Especially, the catalytic activity can be further improved in the presence of water in the cathode chamber. The results show that the lithiated transition metal oxide composite is a promising symmetrical electrode for ceria-carbonate electrolyte and composite approach might a probable solution to develop super-performance electrodes for reduced temperature ceramic fuel cells.

  • 16.
    Fan, Liangdong
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Chen, Mingming
    Chemical engineering and technology.
    Wang, Chengyang
    Chemical engineering and technology.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Xuetao
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Wang, Xiaodi
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik, Funktionella material, FNM.
    Ma, Ying
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik, Funktionella material, FNM.
    High performance transition metal oxide composite cathode for low temperature solid oxide fuel cells2012Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 203, nr 1, s. 65-71Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low temperature solid oxide fuel cells (SOFCs) with metal oxide composite cathode on the ceria–carbonate composite electrolyte have shown promising performance. However, the role of individual elements or compound is seldom investigated. We report here the effect of the ZnO on the physico-chemical and electrochemical properties of lithiated NiO cathode. The materials and single cells are characterized by X-ray diffraction, scanning electron microscopy, DC polarization electrical conductivity, electrochemical impedance spectroscopy and fuel cell performance. The ZnO modified lithiated NiO composite materials exhibit smaller particle size and lower electrical conductivity than lithiated NiO. However, improved electro-catalytic oxygen reduction activity and power output are achieved after the ZnO modification. A maximum power density of 808 mW cm−2 and the corresponding interfacial polarization resistance of 0.22 Ω cm2 are obtained at 550 °C using ZnO modified cathode and 300 μm thick composite electrolyte. The single cell keeps reasonable stability over 300 min at 500 °C. Thus, ZnO modified lithiated NiO is a promising cathode candidate for low temperature SOFCs.

  • 17.
    He, Yunjuan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Afzal, Muhammad
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhang, Wei
    Zhao, Yufeng
    Li, Junjiao
    Zhu, Bin
    Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta as high performance cathode for low-temperature SOFCs2016Ingår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 191, s. 223-229Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to improve the catalytic activity of commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) for low-temperature solid oxide fuel cells (LTSOFC) (300-600 degrees C), CoOx has been used to modify the commercial BSCF through a solution coating approach. Phase and morphology of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS), respectively. BSCF with 10 wt% CoOx exhibited an improved conductivity of 44 S/cm, and achieved a peak power density of 463 mW/cm(2) at 550 degrees C for LTSOFC, which is a 100% enhancement than that with the BSCF cathode. The cathode oxygen reduction reaction (ORR) promoted by CoOx and enhanced device performance mechanism have been proposed. This work provides a new way for the exploitation of high effective cathode materials for LTSOFCs.

  • 18.
    Lima, Raquel B.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Li, Jiebing
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Direct lignin fuel cell for power generation2011Ingår i: 16th International Symposium on Wood, Fiber and Pulping Chemistry: Proceedings, ISWFPC, 2011, s. 257-262Konferensbidrag (Refereegranskat)
    Abstract [en]

    Lignin, the second most abundant component after cellulose in biomass, has been examined in this study as a fuel for a direct conversion into electricity using direct carbon fuel cell (DCFC). Two different types of industrial lignins were investigated: lignosulphonate (LS) and kraft lignin (KL), either directly in their commercial forms, after their blending with commercial active carbon (AC) or after alternation of their structures by a pH adjustment to pH 10. It has been found that the open circuit voltage (OCV) of the DCFC could reach around 0.7 V in most of the trials. Addition of active carbon increased the maximum current density from 43∼57 to 85∼101 mA/cm 2. The pH adjustment not only increased the maximum current density but also reduced the differences between the two types of lignins, resulting in an OCV of 0.680-0.699 V and a maximum current density of 74∼79 mA/cm 2 from both lignins. Typical power density was 12 (for KL +AC) and 24 mW cm -2 (for LS +AC). It has been concluded that a direct lignin fuel cell is feasible and the lignin hydrophilicity is critical for the cell performance.

  • 19.
    Liu, Qinghua
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Li, Yongdan
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Advanced electrolyte-free fuel cells based on functional nanocomposites of a single porous component: analysis, modeling and validation2012Ingår i: RSC Advances, ISSN 2046-2069, Vol. 2, nr 21, s. 8036-8040Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recently, a fuel cell device constructed with only one layer composited of ceria-based nanocomposites (typically, lithium nickel oxide and gadolinium doped ceria (LiNiO2-GDC) composite materials), called an electrolyte-free fuel cell (EFFC), was realized for energy conversion by Zhu et al. The maxium power density of this single-component fuel cell is 450 mW cm(-2) at 550 degrees C when using hydrogen fuel. In this study, a model was developed to evaluate the performance of an EFFC. The kinetics of anodic and cathodic reactions were modeled based on electrochemical impedance spectroscopy (EIS) measurements. The results show that both of the anodic and cathodic reactions are kinetically fast processes at 500 degrees C. Safety issues of an EFFC using oxidant and fuels at the same time without a gas-tight separator were analyzed under open circuit and normal operation states, respectively. The reaction depth of anodic and cathodic processes dominated the competition between surface electrochemical and gas-phase reactions which were effected by the catalytic activity and porosity of the materials. The voltage and power output of an EFFC were calculated based on the model and compared with the experimental results.

  • 20.
    Qin, Haiying
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Singh, M.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Lund, P.
    Integration design of membrane electrode assemblies in low temperature solid oxide fuel cell2012Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 37, nr 24, s. 19365-19370Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, an integration design of membrane electrode assemblies in low temperature solid oxide fuel cells (LTSOFCs) is accomplished by using a mixed ionic-electronic conductor. The mixed ionic-electronic conductor is a composite material, LiNiCuZn oxides, Gd2O3 and Sm-doped CeO2 composited with Na2CO3 (LiNiCuZn oxides-NGSDC), which consists of ionic conductor, n-type and p-type semiconductors. The multi-phase composite material can also be used in single layer fuel cell (SLFC) to replace single-phase materials. A SLFC using the LiNiCuZn oxides-NSGDC composite exhibits an OCV of 1.05 V and maximum power density of 800 mW cm-2, which is comparable to the cell performance of conventional LTSOFCs and much higher than that of SLFC reported before. The reasons leading to the good performance are porous structure of electrode and the matching of ionic conductor and semiconductor.

  • 21.
    Raza, Rizwan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Takeda, Kaori
    Mizuhata, Minoru
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Electrochemical study on co-doped ceria-carbonate composite electrolyte2012Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 201, s. 121-127Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A co-doped ceria-carbonate (Ce0.8Sm0.2-xCaxO2-delta-Na2CO3) has been synthesized by a co-precipitation method. The detailed electrochemical characterizations (e.g. impedance spectra, polarization curve and IV curves) of this composite material are reported and discussed. The two phase nanocomposite electrolytes with carbonate coated on the co-doped ceria displays dual (H+/O2-) ion conduction at low temperature (300-600 degrees C) in solid oxide fuel cell. The observed remarkable temperature-dependent of conductivity is attributed to the softening/melting of carbonate phase as the physical state of carbonate phase transforms from solid to molten state. Coexistence of various charge carriers, oxide phase composition, and the oxide-carbonate interfacial area are investigated by Raman spectra. The enhancement of conductivity is also discussed by the general mixing rule/percolation theory of composite interfaces. The co-doping with 2nd phase gives a good approach to realize challenges for solid oxide fuel cell.

  • 22. Singh, M.
    et al.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Single component low-temperature fuel cell with alcohol fuel2011Ingår i: EFC 2011 - Proceedings of the 4th European Fuel Cell Piero Lunghi Conference and Exhibition, 2011, s. 211-212Konferensbidrag (Refereegranskat)
    Abstract [en]

    Following our previous study, we report here novel preparation of the low temperature single component fuel cell and related materials and performance using methanol as fuel for the first time. A maximum power density of 206 mW/cm2 was achieved at 550 °C, indicating the feasibility of direct liquid fed single component fuel cells.

  • 23.
    Tan, Wenyi
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Ajmal Khan, Muhammad
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte2013Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 38, nr 1, s. 370-376Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, the effect of copper, iron and cobalt oxides on electrochemical properties of lithiated NiO cathodes was reported in low temperature solid oxide fuel cell (LT-SOFC) with ceria-carbonate composite electrolyte. The modified lithiated NiO cathodes were characterized by XRD, DC conductivity, SEM and electrochemical measurements. In spite of lower conductivities of modified cathodes, Li-Ni-M (M = Cu, Fe, Co) oxides with the order of Li-Ni-Co oxide > Li-Ni-Fe oxide > Li-Ni-Cu oxide, compared with that without modification, the catalytic activities of all the Li-Ni-M oxides were improved. In particularly, cobalt oxide modification favors both charge transfer and gas diffusion for O2 reduction reaction as confirmed by AC impedance measurements. SEM micrographs show that grains aggregate with the modification of copper oxide or iron oxide, which may be responsible for the increased gas diffusion resistance. The results indicate that the lithiated NiO modified by cobalt oxide as cathode is an alternative to improve LT-SOFC performance with ceria-carbonate composite electrolyte.

  • 24.
    Wang, Xuetao
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Electrochemical performance of lignin doped SDC as anode for application in low temperature solid oxide fuel cell2011Ingår i: Proceedings: 4th European Fuel Cell - Piero Lunghi Conference, Italy: ENEA , 2011, s. 189-190Konferensbidrag (Refereegranskat)
  • 25. Zhao, Yufeng
    et al.
    He, Yunjuan
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China.
    He, Jing
    Xiong, Ding-Bang
    Gao, Faming
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Univ, Fac Phys & Elect Sci, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Hubei, Peoples R China.
    Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells2014Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 39, nr 23, s. 12317-12322Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, hierarchically porous composite metal oxide LiNiCuZn-oxide (LNCZO) was successfully synthesized through a sol-gel method with a bio-Artemia cyst shell (AS) as a hard template. The phase and morphology of the products were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM). The as-synthesized material was used as symmetrical electrodes, anode and cathode, for the SDC-LiNaCO3 (LNSDC) electrolyte based low temperature solid oxide fuel cell (LTSOFCs), achieving a maximum power density of 132 mW cm(-2) at 550 degrees C. Besides, a single-component fuel cell device was also demonstrated using a mixture of as-prepared LNCZO and ionic conductor LNSDC, and a corresponding peak power output of 155 mW cm(-2) was obtained, suggesting that the hierarchically porous product has high prospective in the single-component fuel cell.

  • 26.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    He, Y.
    Zhao, Y.
    Wang, H.
    A commercial lithium battery LiMn-oxide for fuel cell applications2014Ingår i: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 126, s. 85-88Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hereby we report first a commercial lithium battery LiMn-oxide (LMO) positive electrode material for fuel cell applications. The obtained LMO can be used for both anode and cathode in a three-layer fuel cell, but displays low electro-catalytic activity and power output. Using a nanocomposite approach we have significantly improved the cell performance from tens mW cm-2 up to 210 mW cm-2, which is technically useful for low temperature (bellow 600 °C) ceramic fuel cells. We also constructed single-layer fuel cell using the LMO/SDC-metal oxide composite and achieved even better performances than those for conventional anode-electrolyte-cathode three-layer fuel cells.

  • 27.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Lund, Peter
    Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites2013Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 106, s. 163-175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent scientific and technological advancements have provided a wealth of new information about solid oxide-molten salt composite materials and multifunctional ceria-based nano-composites for advanced fuel cells (NANOCOFC). NANOCOFC is a new approach for designing and developing of multi-functionalities for nanocomposite materials, especially at 300-600 degrees C. NANOCOFC and low temperature advanced ceramic fuel cells (LTACFCs) are growing as a new promising area of research which can be explored in various ways. The ceria-based composite materials have been developed as competitive electrolyte candidates for low temperature ceramic fuel cells (LTCFCs). In the latest developments, multifunctional materials have been developed by integrating semi- and ion conductors, which have resulted in an emerging insight knowledge concerned with their R&D on single-component electrolyte-free fuel cells (EFFCs) - a breakthrough fuel cell technology. A homogenous component/layer of the semi- and ion conducting materials can realize fuel cell all functions to avoid using three components: anode, electrolyte and cathode, i.e. "three in one" highlighted by Nature Nanotechnology (2011). This report gives a short review and advance knowledge on worldwide activities on the ceria-based composites, emphasizing on the latest semi-ion conductive nanocomposites and applications for new applied energy technologies. It gives an overview to help the audience to get a comprehensive understanding on this new field.

  • 28.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhao, Yufeng
    Tan, Wenyi
    Xiong, Dingbang
    Wang, Hao
    Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell2014Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 4, nr 20, s. 9920-9925Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The research activities on single-component fuel cells (SCFCs) have opened new doors for keeping ahead with two major areas of focus: improvement of SCFC performances by contributing new materials, and scientific understanding of the SCFC nature and operation mode. The present work reports the exploitation of new material composed of the Gd doped ceria-KAlZn-oxide (GDC-KAZ) and the LiNiCuZn-oxide (LNCZ), combining ionic and semiconducting properties for SCFCs. A new method is first used through an internal electron-hole redox cycle resulting in no net electrons to avoid ceria electronic conduction problems thus to develop an excellent GDC-KAZ electrolyte. Its ionic conductivity, 0.08 S cm(-1) at 600 degrees C, is ten times higher than that of GDC. The SCFC using the GDC-KAZ-LNCZ materials exhibits a remarkable electrochemical performance of 628 mW cm(-2) at 580 degrees C, significantly higher than that of conventional three-component (anode/electrolyte/cathode) fuel cells. The results bring about a new cost-effective and robust system with significant scientific and economic consequences for the fuel cell field.

  • 29.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Lund, Peter
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Patakangas, Janne
    Huang, Qiu-An
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    A new energy conversion technology based on nano-redox and nano-device processes2013Ingår i: Nano Energy, ISSN 2211-2855, Vol. 2, nr 6, s. 1179-1185Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrolyte-separator-free fuel cell (EFFC) is a new emerging energy conversion technology. The EFFC consists of a single-component of nanocomposite material which works as a one-layer fuel cell device contrary to the traditional three-layer anode-electrolyte-cathode structure, in which an electrolyte layer plays a critical role. The nanocomposite of a single homogenous layer consists of a mixture of semiconducting and ionic materials that provides the necessary electrochemical reaction sites and charge transport paths for a fuel cell. These can be accomplished through tailoring ionic and electronic (n, p) conductivities and catalyst activities, which enable redox reactions to occur on nano-particles and finally accomplish a fuel cell function.

  • 30.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Ma, Ying
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik, Funktionella material, FNM.
    Wang, Xiaodi
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Materialfysik, Funktionella material, FNM.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    A fuel cell with a single component functioning simultaneously as the electrodes and electrolyte2011Ingår i: Electrochemistry communications, ISSN 1388-2481, E-ISSN 1873-1902, Vol. 13, nr 3, s. 225-227Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A fuel cell device is realized by using a single component of lithium nickel oxide and gadolinium doped ceria (LiNiO2-GDC) composite material, a mixture of electronic and ionic conductors, when nickel foam and silver paste are attached to each surface of the single component pellet as current collectors. This simple fuel cell construction with only one component showed the same or even better performances compared to conventional three-component MEA (membrane electrolyte assembly) fuel cell using GDC as electrolyte. The maximum power density of 450 mW/cm(2) has been achieved at 550 degrees C for the single component fuel cell.

  • 31.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Liu, Qinghua
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Patakangas, J
    Lund, P
    A single-component fuel cell reactor2011Ingår i: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 36, nr 14, s. 8536-8541Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report here a single-component reactor consisting of a mixed ionic and semi-conducting material exhibiting hydrogen-air (oxygen) fuel cell reactions. The new single-component device was compared to a conventional three-component (anode/electrolyte/cathode) fuel cell showing at least as good performance. A maximum power density of 300-600 mW cm(-2) was obtained with a LiNiZn-oxide and ceria-carbonate nanocomposite material mixture at 450-550 degrees C. Adding a redox catalyst element (Fe) resulted in an improvement reaching 700 mW cm(-2) at 550 degrees C.

  • 32.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Liu, Qinghua
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Zhu, Zhigang
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Lund, Peter
    A new energy conversion technology joining electrochemical and physical principles2012Ingår i: RSC Advances, ISSN 2046-2069, Vol. 2, nr 12, s. 5066-5070Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a new energy conversion technology joining electrochemical and physical principles. This technology can realize the fuel cell function but built on a different scientific principle. The device consists of a single component which is a homogenous mixture of ceria composite with semiconducting materials, e.g. LiNiCuZn-based oxides. The test devices with hydrogen and air operation delivered a power density of 760mWcm(-2) at 550 degrees C. The device has demonstrated a multi-fuel flexibility and direct alcohol and biogas operations have delivered 300-500 mW cm(-2) at the same temperature. Device physics reveal a key principle similar to solar cells realizing the function based on an effective separation of electronic and ionic conductions and phases within the single-component. The component material multi-functionalities: ion and semi-conductions and bi-catalysis to H-2 or alcohol (methanol and ethanol) and air (O-2) enable this device realized as a fuel cell.

  • 33.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Single-component and three-component fuel cells2011Ingår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 196, nr 15, s. 6362-6365Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Single-component and three-component fuel cell devices have been studied using mixed ionic and electronic conductor. The three-component fuel cell means a conventional fuel cell which is the configuration consists of anode, electrolyte and cathode; while the single-component fuel cell uses only one component that can function as the electrodes and electrolyte simultaneously. The single-component fuel cell showed the same or even better performance compared to conventional three-component fuel cell. A maximum power density of 700 mW cm(-2) has been achieved by the single-component fuel cell at 550 degrees C.

  • 34.
    Zhu, Bin
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Raza, Rizwan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Qin, Haiying
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Liu, Qinghua
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fuel cells based on electrolyte and non-electrolyte separators2011Ingår i: Energy & Environmental Science, ISSN 1754-5692, E-ISSN 1754-5706, Vol. 4, nr 8, s. 2986-2992Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the long-history of fuel cell R&D, the electrolyte is an essential part in a three-component configuration because it separates the anode and cathode to realize the fuel cell's functions. We report here non-electrolyte separator fuel cells (NEFCs) compared with electrolyte based fuel cells (EBFCs). The NEFC consists of single- or dual-components based on mixed ionic and semi-conductors but with no electrolyte separator. A maximum power density of 680 mW cm(-2) has been achieved by the NEFC at 550 degrees C. The NEFCs exhibit performances comparable to, and in some cases even better than, those of conventional EBFCs. The design of NEFCs, new material functionalities and device performances may contribute to new fuel cell R&D.

1 - 34 av 34
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf