Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amin, Yasar
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    RFID antenna humidity sensor co-design for USN applications2013In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 10, no 4, p. 20130003-Article in journal (Refereed)
    Abstract [en]

    We demonstrate for the first time an RFID tag antenna which itself is humidity sensor and also provides calibration functionality. The antenna is comprised of T-matching network and horizontally meandered lines for impedance matching and reliable near-field communication. The novel contour design provides humidity sensing, and calibration functions whilst concurrently acts as a radiating element along with quadrangular capacitive tip-loading with covered middle portion for far-field communication. The inkjet printed prototypes of the antenna provide effective ambient humidity sensing while demonstrating stable RFID communication. The antenna has a compact size of 1.1 x 10.2 cm for 902-928MHz band.

  • 2.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Printed RFID Humidity Sensor Tags for Flexible Smart Systems2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Radio frequency identification (RFID) and sensing are two key technologies enabling the Internet of Things (IoT). Development of RFID tags augmented with sensing capabilities (RFID sensor tags) would allow a variety of new applications, leading to a new paradigm of the IoT. Chipless RFID sensor technology offers a low-cost solution by eliminating the need of an integrated circuit (IC) chip, and is hence highly desired for many applications. On the other hand, printing technologies have revolutionized the world of electronics, enabling cost-effective manufacturing of large-area and flexible electronics. By means of printing technologies, chipless RFID sensor tags could be made flexible and lightweight at a very low cost, lending themselves to the realization of ubiquitous intelligence in the IoT era.

    This thesis investigated three construction methods of printable chipless RFID humidity sensor tags, with focus on the incorporation of the sensing function. In the first method, wireless sensing based on backscatter modulation was separately realized by loading an antenna with a humidity-sensing resistor. An RFID sensor tag could then be constructed by combining the wireless sensor with a chipless RFID tag. In the second method, a chipless RFID sensor tag was built up by introducing a delay line between the antenna and the resistor. Based on time-domain reflectometry (TDR), the tag encoded ID in the delay time between its structural-mode and antenna-mode scattering pulse, and performed the sensing function by modulating the amplitude of the antenna-mode pulse.

    In both of the above methods, a resistive-type humidity-sensing material was required. Multi-walled carbon nanotubes (MWCNTs) presented themselves as promising candidate due to their outstanding electrical, structural and mechanical properties. MWCNTs functionalized (f-MWCNTs) by acid treatment demonstrated high sensitivity and fast response to relative humidity (RH), owing to the presence of carboxylic acid groups. The f-MWCNTs also exhibited superior mechanical flexibility, as their resistance and sensitivity remained almost stable under either tensile or compressive stress. Moreover, an inkjet printing process was developed for the f-MWCNTs starting from ink formulation to device fabrication. By applying the f-MWCNTs, a flexible humidity sensor based on backscatter modulation was thereby presented. The operating frequency range of the sensor was significantly enhanced by adjusting the parasitic capacitance in the f-MWCNTs resistor. A fully-printed time-coded chipless RFID humidity sensor tag was also demonstrated. In addition, a multi-parameter sensor based on TDR was proposed.The sensor concept was verified by theoretical analysis and circuit simulation.

    In the third method, frequency-spectrum signature was utilized considering its advantages such as coding capacity, miniaturization, and immunity to noise. As signal collision problem is inherently challenging in chipless RFID sensor systems, short-range identification and sensing applications are believed to embody the core values of the chipless RFID sensor technology. Therefore a chipless RFID humidity sensor tag based on near-field inductive coupling was proposed. The tag was composed of two planar inductor-capacitor (LC) resonators, one for identification, and the other one for sensing. Moreover, paper was proposed to serve as humidity-sensing substrate for the sensor resonator on accounts of its porous and absorptive features.

    Both inkjet paper and ordinary packaging paper were studied. A commercial UV-coated packaging paper was proven to be a viable and more robust alternative to expensive inkjet paper as substrate for inkjet-printed metal conductors. The LC resonators printed on paper substrates showed excellent sensitivity and reasonable response time to humidity in terms of resonant frequency. Particularly, the resonator printed on the UV-coated packaging paper exhibited the largest sensitivity from 20% to 70% RH, demonstrating the possibilities of directly printing the sensor tag on traditional packages to realize intelligent packaging at an ultra-low cost.

  • 3.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mueller, Matthias
    Xaar Jet AB.
    Zapka, Werner
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Inkjet Printed UWB Impulse-based Wireless Sensor for Flexible Electronics2012In: Gigahertz Symposium, 2012Conference paper (Other academic)
  • 4.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Fudan University, China.
    Design of a Printable Multi-Functional Sensor for Remote Monitoring2011In: 2011 IEEE SENSORS Proceedings, IEEE Sensors Council, 2011, p. 675-678Conference paper (Refereed)
    Abstract [en]

    This paper proposes a novel printable multi-functional passive sensor for remote monitoring. The sensor mainly consists of a series of pairs of transmission lines and sensing resistors whose resistances vary with one physical parameter. A short-duration radio-frequency pulse as interrogation signal travels along the transmission line and is partially reflected at each resistor due to impedance mismatch. By measuring the energies of the discrete reflected pulses in time domain, all the physical parameters could be detected simultaneously. This design not only saves complex circuitry but also enables easy adaptation for detecting multiple parameters. We have theoretically analyzed the sensor assuming it has an arbitrary number of sensing resistors. The introduced algorithm between the pulse energies and resistances is verified by simulation. As a prototype, an inkjet-printed sensor on polyimide foil is presented. The experimental measurement has successfully proven the design concept. 

  • 5.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Fudan University, China .
    Hållstedt, Julius
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Huang, Yiping
    Fudan University.
    Development and experimental verification of analytical models for printable interdigital capacitor sensors on paperboard2009In: 2009 IEEE Sensors, IEEE Sensors Council, 2009, p. 1034-1039Conference paper (Refereed)
    Abstract [en]

    Printed interdigital capacitor DWI on paperboard is a promising solution for low-cost sensors in intelligent packaging applications. The currently available analytical models of multi-layered IDCs are targeted to those fabricated by conventional semiconductor process. For this reason, we have adapted two promising models and assessed their accuracies by comparison with experimental data. We modified these models by treating the paper as non-infinite thick substrate and taking the effect of printed metal thickness into account. The models are studied further to reveal the relationship between the response of capacitance change and various geometric parameters which enables a quick way of obtaining the optimum IDC structure design. The modified Gevorgian model fits our experimental data best, and the sensitivity of IDCs is largely affected by its spatial wavelength and the thickness of sensing material layer, while the finger number, length and metallization ratio have minor impact.

  • 6.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Lopez Cabezas, Ana
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zhang, Zhi-Bin
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Flexible UHF Resistive Humidity Sensors Based on Carbon Nanotubes2012In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 12, no 9, p. 2844-2850Article in journal (Refereed)
    Abstract [en]

    This paper presents the investigation of the resistive humidity-sensing properties of multi-walled carbon nanotubes (MWCNTs). MWCNTs functionalized by acid treatment (f-MWCNTs) exhibit rather high sensitivity in resistance toward humidity, owing to the presence of carboxylic groups on the nanotube surface. By integrating the f-MWCNTs resistor into a wireless sensor platform, flexible humidity sensors for ultra-high frequency applications are investigated. The operating frequency range of the sensor is dramatically increased from 600 MHz to 2 GHz by adjusting the resistor-electrodes' configuration. This enhancement is predominately attributed to the variation in parasitic capacitance between the resistor-electrodes.

  • 7.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Mueller, Matthias
    Xaar Jet AB.
    Liebeskind, Jens
    Xaar Jet AB.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Schmidt, Wolfgang
    Felix Schoeller GmbH & Co. KG.
    Zapka, Werner
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Characterization of Inkjet Printed Coplanar Waveguides for Flexible Electronics2011In: NIP27: International Conference on Digital Printing Technologies and Digital Fabrication 2011: TECHNICAL PROGRAMS, ABSTRACTS, AND CD PROCEEDINGS, The Society for Imaging Science and Technology, 2011, p. 454-457Conference paper (Refereed)
    Abstract [en]

    The low conductivity and thin layers of the inkjet-printed metal conductors have always been a big concern in paper-based printed electronics for high frequency applications. To provide the fundamental knowledge, the high frequency characteristics of inkjet-printed coplanar waveguides on paper substrate were studied experimentally in terms of characteristic impedance and conductor losses using the time domain reflectometry technique. The influences of different printing settings and of geometric parameters on the waveguide's properties were investigated. Considering the measurement accuracy in high frequency characterization, one sample with an impedance of 51.2Ω was achieved. The electrical stability of the samples was also studied and explained. In addition, one waveguide sample was printed in a way that the pattern area with the highest current density is thickened. This variable ink-layer thickness approach has successfully been proven as a promising solution to reduce the conductor losses and yet consuming less ink.

  • 8.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Low Cost Printed Chipless RFID Humidity Sensor Tag for Intelligent Packaging2015In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 15, no 6, p. 3201-3208Article in journal (Refereed)
    Abstract [en]

    This paper presents a fully-printed chipless radio frequency identification sensor tag for short-range item identification and humidity monitoring applications. The tag consists of two planar inductor-capacitor resonators operating wirelessly through inductive coupling. One resonator is used to encode ID data based on frequency spectrum signature, and another one works as a humidity sensor, utilizing a paper substrate as a sensing material. The sensing performances of three paper substrates, including commercial packaging paper, are investigated. The use of paper provides excellent sensitivity and reasonable response time to humidity. The cheap and robust packaging paper, particularly, exhibits the largest sensitivity over the relative humidity range from 20% to 70%, which offers the possibility of directly printing the sensor tag on traditional packages to make the package intelligent at ultralow cost.

  • 9.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mueller, Maik
    Xaar Jet AB.
    Lopez Cabezas, Ana
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mantysalo, Matti
    Forsberg, Fredrik
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zapka, Werner
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Fabrication and performance evaluation of ultralow-cost inkjet-printed chipless RFID tags2012Conference paper (Refereed)
    Abstract [en]

    This paper studies the performance of inkjet-printed chipless RFID tags based on planar inductor-capacitor resonant circuits. Besides using double-sided printing, a sandwiching process is introduced to fabricate the tags in order to eliminate the need of through-substrate via and match roll-to-roll processing. Due to lower conductivity (~1.25E+7 S/m) and smaller thickness (~1.7μm) of printed conductors with silver nanoparticle ink, the resonant peaks of inkjet-printed tags exhibit around as twice of half-power bandwidth and 60% of maximum reading distance as the etched tags from bulk copper. Nevertheless, the inkjet-printed tag performance is sufficient for many applications, and it can be adjusted and improved by printing and sintering processes.

  • 10.
    Feng, Yi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mäntysalo, Matti
    Tampere University of Technology, Finland.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Electrical and humidity-sensing characterization of inkjet-printed multi-walled carbon nanotubes for smart packaging2013In: IEEE SENSORS 2013 - Proceedings, IEEE , 2013, p. 1-4Conference paper (Refereed)
    Abstract [en]

    Printing is considered a cost-effective way to fabricate electronics on unconventional substrates enabling, for example, smart packaging. Functionalized multi-walled carbon nanotubes (f-MWCNTs) having carboxylic groups on their surfaces possess great potential as flexible resistive humidity sensor. In this paper, we report on the inkjet printing and characterization of f-MWCNTs in terms of sheet resistance and humidity-sensitivity. Stable f-MWCNTs ink is formulated using aqueous ethylene glycol as solvent. Sheet resistance of printed f-MWCNTs films on polyimide foil reduces by increasing the number of printed layers as well as post-printing annealing temperature. Meanwhile, the raised annealing temperature degrades the films' humidity-sensitivity, which could be explained by the loss of the carboxylic groups. The electrical and sensing properties of f-MWCNTs also have a negative temperature coefficient regarding ambient temperature, which should be considered in practical application.

  • 11.
    Li, Jiantong
    et al.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Unander, Tomas
    López Cabezas, Ana
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Shao, Botao
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Liu, Zhiying
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Uppsala University, Sweden.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Forsberg, Esteban Bernales
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Zhang, Zhibin
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Jögi, Indrek
    Gao, Xindong
    Boman, Mats
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Nilsson, Hans-Erik
    Zhang, Shi-Li
    KTH, School of Information and Communication Technology (ICT). Uppsala University, Sweden.
    Ink-jet printed thin-film transistors with carbon nanotube channels shaped in long strips2011In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 109, no 8, article id 084915Article in journal (Refereed)
    Abstract [en]

    The present work reports on the development of a class of sophisticated thin-film transistors (TFTs) based on ink-jet printing of pristine single-walled carbon nanotubes (SWCNTs) for the channel formation. The transistors are manufactured on oxidized silicon wafer and flexible plastic substrates at ambient conditions. For this purpose, ink-jet printing techniques are developed aiming at high-throughput production of SWCNT thin-film channels shaped in long strips. Stable SWCNT inks with proper fluidic characteristics are formulated by polymer addition. The present work unveils, through Monte Carlo simulation and in the light of heterogeneous percolation, the underlying physics of the superiority of long-strip channels for SWCNT TFTs. It further predicts the compatibility of such a channel structure with ink-jet printing taking into account the minimum dimensions achievable by commercially available printers. The printed devices exhibit improved electrical performance and scalability, compared to previously reported ink-jet printed SWCNT TFTs. The present work demonstrates that ink-jet printed SWCNT TFTs of long-strip channels are promising building blocks for flexible electronics.

  • 12.
    Lopez Cabezas, Ana
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zhang, Zhi-Bin
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Department of Engineering Sciences, Uppsala University.
    Thermal ageing of electrical conductivity in carbon nanotube/polyaniline composite films2013In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 59, p. 270-277Article in journal (Refereed)
    Abstract [en]

    The influence of carbon nanotubes on the thermal ageing effect of the electrical conductivity of composite thin films is presented. The composite thin films comprise carbon nanotube/polyaniline nanofibers. When subject to thermal treatment, the presence of nanotubes retards the loss of dopants from the polyaniline and enhances the thermal stability in electrical conductivity of the composite thin films. Specifically, an increase in temperature for the conductivity degradation and a significant reduction in the rate of the conductivity degradation of the composite thin films are observed. Upon prolonged heating, the composite thin films exhibit relative large conductivity at high nanotube content, while the polyaniline thin films become insulating.

  • 13.
    Lopez Cabezas, Ana
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zhang, Zhi-Bin
    Department of Engineering Sciences, Uppsala University.
    Water dispersible carbon nanotube/polyaniline composite: study of the morphology and electrical conductivityIn: Synthetic metals, ISSN 0379-6779, E-ISSN 1879-3290Article in journal (Other academic)
  • 14.
    Mäntysalo, Matti
    et al.
    TUT.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Jonsson, Fredrik
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Cabezas, Ana Lopez
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    System integration of smart packages using printed electronics2012In: Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd, IEEE , 2012, p. 997-1002Conference paper (Refereed)
    Abstract [en]

    The last decade has shown enormous interest in additive and printed electronics manufacturing technologies, especially in intelligent packaging. Scientists and engineers all over the world are developing printed organic circuits. Despite their effort, the performance and yield of all-printed devices cannot replace silicon-based devices in smart package applications. Therefore, we have developed a hybrid interconnection platform to seamlessly integrate printed electronics with silicon-based electronics, close the gap between the two technologies, and to anticipate adaption of printed electronic technologies. We studied the suitability of a printed interconnection platform by fabricating a printed sensor-box that contains printed nano-Ag-interconnections on low-temperature plastic, a printable humidity sensor based on functionalized MWCNTs, a printed battery, conventional SMDs, and a silicon-based MCU.

  • 15.
    Shen, Jue
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Majid, Baghaei-Nejad
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mao, Jia
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics.
    Pang, Zhibo
    KTH.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xu, Lida
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Interactive UHF/UWB RFID tag for mass customization2017In: Information Systems Frontiers, ISSN 1387-3326, E-ISSN 1572-9419, Vol. 19, no 5, p. 1177-1190Article in journal (Refereed)
    Abstract [en]

    Mass customization (MC) under the context of the Internet of Things (IoT) is expected to reform the traditional mass manufacturing. To contribute to MC from information communication and user interaction aspects, this work proposes an Ultra-High Frequency (UHF) RFID tag with an Impulse-Radio Ultra-Wide Band (IR-UWB) transmitter and an inkjet-printed Electrochromic (EC) display. First, compared to the conventional UHF RFID tags, the proposed tag shows the advantage of higher transmission data rate with still low power consumption. The response time in multi-tag accessing scenarios can be reduced to less than 500 ms per 1000 tags by the pipeline of the tag responses in IR-UWB link and the reader acknowledgments in UHF RFID link as well as by reducing the length of empty slots. Second, the tag is integrated with a flexible EC display manufactured by inkjet-printing on the polyimide substrate. It works as an automatically refreshed paper label that offers an intuitive human-to-device interface to improve the efficiency of the offline workers. To conquer the material variations and make use of the long retention time of the printed EC display, its threshold voltage is utilized and a feedback comparator enabling the display driver by the threshold voltage is designed. A System-on-Chip (SoC) is implemented in UMC 0.18 mu m CMOS process. According to the experimental results: 1) the IR-UWB transmitter achieves 1.02 V pulse amplitude and 900 ps pulse duration with 18 pJ/pulse energy consumption; 2) the EC display driver automatically refreshes the display when the image fades out, and consumes 1.98 mu W per 1 cm(2) display size to retain an image. The UHF/UWB RFID display tag integrated on polyimide substrate is conceptually demonstrated at the end of the paper.

  • 16.
    Shen, Jue
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mao, Jia
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics.
    Yang, Geng
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Nejad, Maji
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    A 180 nm-CMOS Asymmetric UWB-RFID Tag with Real-time Remote-monitored ECG-sensing2015In: Proceedings of the International Conference on Biomedical Electronics and Devices, 2015, p. 210-215Conference paper (Refereed)
    Abstract [en]

    This paper proposes an asymmetric ultra-wideband - radio frequency identification (UWB-RFID) tag with electrocardiogram (ECG)-sensing capability for patients remote-monitoring in hospital environment. A UWB-RFID communication protocol is suggested for real-time transmission of undistorted ECG by interleaving ADC sampling and burst-mode UWB transmission. The proposed system shows a maximum accessing capability of 400 tags/second at 1.5 KHz ECG sampling rate with 10 Mbps UWB pulse rate. The tag consists of UHF-RFID receiver, UWB transmitter, ECG analog front-end, multi-input ADC and baseband circuitry integrated on two silicon dies. It was implemented by 6 mm2 -sized 180 nm CMOS technology. Electrodes for ECG-sensing are manufactured by inkjet-printing on polyimide substrate. Experiment results show that the tag transmits UWB pulses at 1 Mbps rate with 18 µW power. The printed electrodes conduct ECG waveform comparable to commercial electrodes.

  • 17.
    Shen, Jue
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Nejad, Majid
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mao, Jia
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics.
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Pang, Zhibo
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xu, Lida
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Interactive UHF/UWB RFID Tag for Mass CustomizationManuscript (preprint) (Other academic)
    Abstract [en]

    Mass customization (MC) under the context ofthe Internet of Things (IoT) is expected to reform traditionalmass manufacturing. To contribute to MC from information communication and user interaction aspects, this work proposes an Ultra-High Frequency (UHF) RFID tag with Impulse-Radio Ultra-Wide Band (IR UWB) transmitter and inkjet-printed Electrochromic (EC) display. First, compared to conventional UHF RFID tags, the proposed tag shows advantages of higher data rate while still keeping low power consumption. A modified communication protocol for such tag is proposed to decrease the response time in multi-tag accessing scenarios to less than 500 ms/1000 tags by the pipeline of IR UWB transmission of tag response and UHF RFID reception of reader acknowledgement and by reducingthe length of empty slots. Secondly, the tag is integrated with a flexible Electro-chromic (EC) display manufactured by inkjet-printing on the polyimide substrate. The tag with the display works as an automatically refreshed paper label which offers an intuitive human-to-device interface to improve the efficiency of the offline workers. To conquer material variation while make use of long retention time of the printed EC display, the threshold voltage of EC display is utilized and a feedback comparator is designed to start refreshing EC display based on the threshold voltage. For functional verification, a Silicon-on-Chip (SoC) is implementedin UMC 180 nm CMOS process. According to experimental results: 1) the IR UWB transmitter shows performances of 1.02 V pulse amplitude, 900 ps pulse duration and 18 pJ/pulse energy consumption; 2) the EC display driver with a feedback comparator automatically starts to refresh display when the image fades out, and reduces the power consumption for retaining image to 1.98 mW per 1 cm2 display size. The UHF/UWB RFID display tag integrated on polyimide substrate is conceptually demonstrated at the end of the paper.

  • 18.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mantysalo, Matti
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Integration of f-MWCNT Sensor and Printed Circuits on Paper Substrate2013In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 13, no 10, p. 3948-3956Article in journal (Refereed)
    Abstract [en]

    The integration of sensors endows the packages with intelligence and interactivity. This paper is considered the most suitable substrate of smart packages because it is cost-effective, light, flexible, and recyclable. However, common concern exists regarding the reliability of paper-based system against bending and folding. In this paper, inkjet-printing of silver nanoparticles is used to form circuit pattern as well as interconnections for system integration on paper substrate. A humidity sensor made by functionalized multiwalled carbon nanotubes is fabricated on the same substrate. We evaluate the electrical performance of paper electronics and the reliability against bending and folding. The results reveal the capability and the limitation of paper electronics in terms of flexibility. The concept of a paper-based smart electronic system and the manufacture process are demonstrated by an interactive humidity sensor card prototype.

  • 19.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yang, Geng
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    RF Interconnections for Paper Electronics2015In: IEEE Microwave and Wireless Components Letters, ISSN 1531-1309, E-ISSN 1558-1764, Vol. 25, no 10, p. 684-686Article in journal (Refereed)
    Abstract [en]

    Low temperature and the fragility features of paper substrate require novel approach for the heterogeneous integration of silicon chip and printed components. In this letter, RF interconnection via capacitive coupling is proposed for printed paper electronics. Capacitive coupling combined with the printed transmission line is used as the signal channel and realizes chip-to-chip communication. Modulation such as orthogonal frequency-division multiplexing is used for multiple chips to share the same transmission channel and increase the data rate. The channel response of the RF interconnection is studied and the feasibility is evaluated.

  • 20.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Mantysalo, Matti
    TUT.
    Jonsson, Fredrik
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Lopez, Ana
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Inkjet Printing in System Integration: Printed Humidity Sensor-Box2012In: 2012 Flexible Electronics & Displays Conference, 2012Conference paper (Refereed)
  • 21.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mäntysalo, Matti
    TUT.
    Lopez, Ana
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Jonsson, Fredrik
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Electrical performance and reliability evaluation of inkjet-printed Ag interconnections on paper substrates2012In: Materials letters (General ed.), ISSN 0167-577X, E-ISSN 1873-4979, Vol. 88, p. 68-72Article in journal (Refereed)
    Abstract [en]

    Printing technology, especially inkjet printing, enables mass manufacturing of electronics on various substrate materials. Paper is one potential carrier for printed electronics to realize low-cost, flexible, recyclable smart packages. However, concerns exist regarding commonly used photo paper substrate, in terms of price and reliability against environmental variation. In this work, for the first time, ordinary low-cost and high-moisture-resistance package paper is investigated as an alternative to be the substrate of printed electronics. The surface morphology and electrical performance of inkjet printed interconnections on six different paper substrates from two categories (inkjet paper and package paper) are examined and compared. The printed interconnections on inkjet papers show smaller sheet resistance and better repeatability than those on package papers. However, low-cost package paper stands higher temperature and exhibits better reliability during 85°C/85 RH aging test. Package paper is suitable for smart package applications that have relaxed requirements of conductivity and high requests of moisture resistance.

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf