Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Håkansson, Joakim
    Bogestål, Yalda
    Caous, Josefin S.
    Blom, Kristina
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andersson, Therese
    Pedersen, Emma
    Björn, Camilla
    Löwenhielm, Peter
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings2019In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 5Article in journal (Refereed)
    Abstract [en]

    Abstract A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged ?-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G? = 0.5?8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

  • 2.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Lundberg, Pontus
    Hawker, Craig J.
    Nyström, Andreas M.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Therapeutic Nanocarriers via Cholesterol Directed Self-Assembly of Well-Defined Linear-Dendritic Polymeric Amphiphiles2017In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, no 9, p. 3891-3898Article in journal (Refereed)
    Abstract [en]

    A novel platform of fluorescently labeled nanocarriers (NCs) is herein proposed based on amphiphilic linear-dendritic polymeric hybrids. These sophisticated polymers were synthesized with a high degree of structural control at a macro-molecular level, displayed hydrophobic cholesterol compartments as chain-terminus groups of the dendritic block and hydrophilic bifunctional linear poly(ethylene glycol) (PEG) block. Spherical supramolecular assemblies with therapeutically relevant properties were successfully achieved including (i) sizes in the region of 100 to 200 nm; (ii) narrow dispersity profile with values close to 0.12; and (iii) self-assembly down to nanomolar concentrations. The modular nature of the NCs permitted the encapsulation of single or dual anticancer drugs and in parallel provide intracellular fluorescent traceability. As polymer therapeutics, the NCs were proven to penetrate the cancerous cell membranes and deliver the cargo of drugs into the nuclei as well as the cytoplasm and mitochondria. The dual drug delivery of both doxorubicin (DOX) and triptolide substantially enhanced the therapeutic efficacy with a 63% significant increase against resistant breast cancer cells when compared to free DOX.

  • 3.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 52, article id 1804966Article in journal (Refereed)
    Abstract [en]

    The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.

  • 4.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Mesa-Antunez, Pablo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Highly crosslinked triazine-trione materials for fracture fixation based on TEC and TYC chemistryManuscript (preprint) (Other academic)
  • 5. Di Bucchianico, S.
    et al.
    Cappellini, F.
    Le Bihanic, F.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Dreij, K.
    Karlsson, H. L.
    Genotoxicity of TiO2 nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry2017In: Mutagenesis, ISSN 0267-8357, E-ISSN 1464-3804, Vol. 32, no 1, p. 127-137Article in journal (Refereed)
    Abstract [en]

    The widespread production and use of nanoparticles calls for faster and more reliable methods to assess their safety. The main aim of this study was to investigate the genotoxicity of three reference TiO2 nanomaterials (NM) within the frame of the FP7-NANoREG project, with a particular focus on testing the applicability of mini-gel comet assay and micronucleus (MN) scoring by flow cytometry. BEAS-2B cells cultured under serum-free conditions were exposed to NM100 (anatase, 50-150 nm), NM101 (anatase, 5-8 nm) and NM103 (rutile, 20-28 nm) for 3, 24 or 48 h mainly at concentrations 1-30 μg/ml. In the mini-gel comet assay (eight gels per slide), we included analysis of (i) DNA strand breaks, (ii) oxidised bases (Fpg-sensitive sites) and (iii) light-induced DNA damage due to photocatalytic activity. Furthermore, MN assays were used and we compared the results of more high-throughput MN scoring with flow cytometry to that of cytokinesis-block MN cytome assay scored manually using a microscope. Various methods were used to assess cytotoxic effects and the results showed in general no or low effects at the doses tested. A weak genotoxic effect of the tested TiO2 materials was observed with an induction of oxidised bases for all three materials of which NM100 was the most potent. When the comet slides were briefly exposed to lab light, a clear induction of DNA strand breaks was observed for the anatase materials, but not for the rutile. This highlights the risk of false positives when testing photocatalytically active materials if light is not properly avoided. A slight increase in MN formation for NM103 was observed in the different MN assays at the lower doses tested (1 and 5 μg/ml). We conclude that mini-gel comet assay and MN scoring using flow cytometry successfully can be used to efficiently study cytotoxic and genotoxic properties of nanoparticles.

  • 6.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Brismar, Hjalmar
    KTH, Superseded Departments (pre-2005), Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, Superseded Departments (pre-2005), Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuscript (preprint) (Other academic)
  • 7.
    Granskog, Viktor
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Garcia-Gallego, Sandra
    KTH.
    von Kieseritzky, Johanna
    Karolinska Inst, Stockholm, Sweden..
    Pettersson, Jennifer
    RISE Res Inst Sweden, Boras, Sweden..
    Stenlund, Patrik
    RISE Res Inst Sweden, Boras, Sweden..
    Zhang, Yuning
    KTH.
    Petronis, Sarunas
    RISE Res Inst Sweden, Boras, Sweden..
    Lyven, Benny
    RISE Res Inst Sweden, Boras, Sweden..
    Arner, Marianne
    Karolinska Inst, Stockholm, Sweden..
    Hakansson, Joakim
    RISE Res Inst Sweden, Boras, Sweden..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    High-performance and biocompatible thiol-ene based adhesive for bone fracture fixation2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 8.
    Granskog, Viktor
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Garcia-Gallego, Sandra
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Adhesion-enhancing primer for high-performance bone adhesive2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 9.
    Granskog, Viktor
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    García-Gallego, Sandra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    von Kieseritzky, Johanna
    Department of Clinical Science and Education and the Department of Hand Surgery, Karolinska Institutet.
    Rosendahl, Jennifer
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Stenlund, Patrik
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Petronis, Sarunas
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Lyvén, Benny
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Arner, Marianne
    Department of Clinical Science and Education and the Department of Hand Surgery, Karolinska Institutet.
    Håkansson, Joakim
    RISE Research Institutes of Sweden, Bioscience and Materials–Medical Device Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    High-Performance Thiol–Ene Composites Unveil a New Era of Adhesives Suited for Bone Repair2018In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, no 26, article id 1800372Article in journal (Refereed)
    Abstract [en]

    The use of adhesives for fracture fixation can revolutionize the surgical procedures toward more personalized bone repairs. However, there are still no commercially available adhesive solutions mainly due to the lack of biocompatibility, poor adhesive strength, or inadequate fixation protocols. Here, a surgically realizable adhesive system capitalizing on visible light thiol–ene coupling chemistry is presented. The adhesives are carefully designed and formulated from a novel class of chemical constituents influenced by dental resin composites and self-etch primers. Validation of the adhesive strengthis conducted on wet bone substrates and accomplished via fiber-reinforced adhesive patch (FRAP) methodology. The results unravel, for the first time, on the promise of a thiol–ene adhesive with an unprecedented shear bondstrength of 9.0 MPa and that surpasses, by 55%, the commercially available acrylate dental adhesive system Clearfil SE Bond of 5.8 MPa. Preclinical validation of FRAPs on rat femur fracture models details good adhesion to the bone throughout the healing process, and are found biocompatible not giving rise to any inflammatory response. Remarkably, the FRAPs are found to withstand loads up to 70 N for 1000 cycles on porcine metacarpal fractures outperforming clinically used K-wires and match metal plates and screw implants.

  • 10.
    Heckler, Ilona
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Arseneault, Mathieu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Triazine trione based adhesive as potential materials for bone fracture fixation2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 11. Latorre-Sanchez, Alejandro
    et al.
    Johansson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pomposo, Jose A.
    Active quinine-based films able to release antimicrobial compounds via melt quaternization at low temperature2018In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 6, no 1, p. 98-104Article in journal (Refereed)
    Abstract [en]

    The fabrication of antibacterial films based on renewable materials (e.g., chitosan) has attracted significant interest in fields such as food packaging, health care and medicine. However, exploiting the antibacterial properties of cinchona alkaloids to design active nanostructured films able to release quinine-based antimicrobial compounds has not been considered previously. Herein, we develop two different routes to produce active quinine-based nanostructured cross-linked films by exploiting the multiple reactive sites of quinine and, specifically, both the nitrogen atom and the vinyl group of the quinuclidine portion of the molecule, as well as their corresponding orthogonal quaternization and thiol-ene coupling reactions. The first synthetic strategy produces stiff and brittle nanostructured quinine-based films of limited utility for practical applications. Conversely, the second approach produces active, flexible and nanostructured quinine-based films (T-g = - 14 degrees C, Young's modulus = 1.3 GPa), which are able to release antimicrobial compounds against E. coli that, remarkably, are noncytotoxic against mouse macrophage and human dermal fibroblast cells. These kinds of active cinchona alkaloid-based coatings are easy to prepare by means of simple, solvent-free, melt quaternization/spreading procedures at a relatively low temperature (120 degrees C), making this second approach one of the most facile reported procedures to date to produce active nanostructured bio-based films.

  • 12.
    Olofsson, Kristina
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Dopa-Functionalized PEG-based Triblock-co-Polymers as Micelles towards Drug-Delivery ApplicationsManuscript (preprint) (Other academic)
  • 13.
    Stenström, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hjorth, Erik
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Guette-Marquet, Simon
    Schultzberg, Marianne
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Synthesis and in Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties2017In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, no 12, p. 4323-4330Article in journal (Refereed)
    Abstract [en]

    Amine functional polymers, especially cationically charged, are interesting biomacromolecules for several reasons, including easy cell membrane entrance, their ability to escape endosomes through the proton sponge effect, spontaneous complexation and delivery of drugs and siRNA, and simple functionalization in aqueous solutions. Dendrimers, a subclass of precision polymers, are monodisperse and exhibit a large and exact number of peripheral end groups in relation to their size and have shown promise in drug delivery, biomedical imaging and as antiviral agents. In this work, hydroxyl functional dendrimers of generation 1 to 5 based on 2,2-bis(methylol)propionic acid (bis-MPA) were modified to bear 6 to 96 peripheral amino groups through esterification reactions with beta-alanine. All dendrimers were isolated in high yields and with remarkable monodispersity. This was successfully accomplished utilizing the present advantages of fluoride-promoted esterification (FPE) with imidazole-activated monomers. Straightforward postfunctionalization was conducted on a second generation amino functional dendrimer with tetraethylene glycol through NHS-amidation and carbonyl diimidazole (CDI) activation to full conversion with short reaction times. Fast biodegradation of the dendrimers through loss of peripheral beta-alanine groups was observed and generational- and dose-dependent cytotoxicity was evaluated with a set of cell lines. An increase. in neurotoxicity compared to hydroxyl-functional dendrimers was shown in neuronal cells, however, the dendrimers were slightly less neurotoxic than commercially available poly(amidoamine) dendrimers (PAMAMs). Additionally, their effect on bacteria was evaluated and the second generation dendrimer was found unique inhibiting the growth of Escherichia coli at physiological conditions while being nontoxic toward human cells. Finally, these results cement a robust and sustainable synthetic route to amino-functional polyester dendrimers with interesting chemical and biological properties.

  • 14.
    Stenström, Patrik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Manzanares, D.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ceña, V.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Evaluation of amino-functional polyester dendrimers based on Bis-MPA as nonviral vectors for siRNA delivery2018In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 23, no 8, article id 2028Article in journal (Refereed)
    Abstract [en]

    Herein, we present the first evaluation of cationic dendrimers based on 2,2-bis(methylol)propionic acid (bis-MPA) as nonviral vectors for transfection of short interfering RNA (siRNA) in cell cultures. The study encompassed dendrimers of generation one to four (G1-G4), modified to bear 6-48 amino end-groups, where the G2-G4 proved to be capable of siRNA complexation and protection against RNase-mediated degradation. The dendrimers were nontoxic to astrocytes, glioma (C6), and glioblastoma (U87), while G3 and G4 exhibited concentration dependent toxicity towards primary neurons. The G2 showed no toxicity to primary neurons at any of the tested concentrations. Fluorescence microscopy experiments suggested that the dendrimers are highly efficient at endo-lysosomal escape since fluorescently labeled dendrimers were localized specifically in mitochondria, and diffuse cytosolic distribution of fluorescent siRNA complexed by dendrimers was observed. This is a desired feature for intracellular drug delivery, since the endocytic pathway otherwise transfers the drugs into lysosomes where they can be degraded without reaching their intended target. siRNA-transfection was successful in C6 and U87 cell lines using the G3 and G4 dendrimers followed by a decrease of approximately 20% of target protein p42-MAPK expression.

  • 15.
    Zhang, Yuning
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordström, R.
    Fan, Yanmiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmsten, M.
    Mongkhontreerat, S.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics2019In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, no 18, article id 1806693Article in journal (Refereed)
    Abstract [en]

    A novel platform of dendritic nanogels is herein presented, capitalizing on the self-assembly of allyl-functional polyesters based on dendritic-linear-dendritic amphiphiles followed by simple cross-linking with complementary monomeric thiols via UV initiated off-stoichiometric thiol-ene chemistry. The facile approach enabled multigram creation of allyl reactive nanogel precursors, in the size range of 190–295 nm, being readily available for further modifications to display a number of core functionalities while maintaining the size distribution and characteristics of the master batch. The nanogels are evaluated as carriers of a spread of chemotherapeutics by customizing the core to accommodate each individual cargo. The resulting nanogels are biocompatible, displaying diffusion controlled release of cargo, maintained therapeutic efficacy, and decreased cargo toxic side effects. Finally, the nanogels are found to successfully deliver pharmaceuticals into a 3D pancreatic spheroids tumor model. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf