Transparent wood (TW) is an emerging optical material combining high optical transmittance and haze for structural applications. Unlike nonscattering absorbing media, the thickness dependence of light transmittance for TW is complicated because optical losses are also related to increased photon path length from multiple scattering. In the present study, starting from photon diffusion equation, it is found that the angle-integrated total light transmittance of TW has an exponentially decaying dependence on sample thickness. The expression reveals an attenuation coefficient which depends not only on the absorption coefficient but also on the diffusion coefficient. The total transmittance and thickness were measured for a range of TW samples, from both acetylated and nonacetylated balsa wood templates, and were fitted according to the derived relationship. The fitting gives a lower attenuation coefficient for the acetylated TW compared to the nonacetylated one. The lower attenuation coefficient for the acetylated TW is attributed to its lower scattering coefficient or correspondingly lower haze. The attenuation constant resulted from our model hence can serve as a singular material parameter that facilitates cross-comparison of different sample types, at even different thicknesses, when total optical transmittance is concerned. The model was verified with two other TWs (ash and birch) and is in general applicable to other scattering media.
A perylenediimide (PDI) tetramer-based three dimensional (3D) molecular material, termed SFX-PDI4, has been designed, synthesized, and characterized. The low-lying HOMO and LUMO energy levels, high electron mobility and good film-formation property make it a promising electron transport material (ETM) in inverted planar perovskite solar cells (PSCs). The device exhibits a high power conversion efficiency (PCE) of 15.3% with negligible hysteresis, which can rival that of device based on PC61BM. These results demonstrate that three dimensional PDI-based molecular materials could serve as high performance ETMs in PSCs.
An organic-inorganic integrated hole transport layer (HTL) composed of the solution-processable nickel phthalocyanine (NiPc) abbreviated NiPc-(OBu)(8) and vanadium(V) oxide (V2O5) is successfully incorporated into structured mesoporous perovskite solar cells (PSCs). The optimized PSCs show the highest stabilized power conversion efficiency of up to 16.8% and good stability under dark ambient conditions. These results highlight the potential application of organic-inorganic integrated HTLs in PSCs.
Eco-friendly materials need "green" fire-retardancy treatments, which offer opportunity for new wood nanotechnologies. Balsa wood (Ochroma pyramidale) was delignified to form a hierarchically structured and nanoporous scaffold mainly composed of cellulose nanofibrils. This nanocellulosic wood scaffold was impregnated with colloidal montmorillonite clay to form a nanostructured wood hybrid with high flame-retardancy. The nanoporous scaffold was characterized by scanning electron microscopy and gas adsorption. Flame-retardancy was evaluated by cone calorimetry, whereas thermal and thermo-oxidative stabilities were assessed by thermogravimetry. The location of well-distributed clay nanoplatelets inside the cell walls was confirmed by energy-dispersive X-ray analysis. This unique nanostructure dramatically increased the thermal stability because of thermal insulation, oxygen depletion, and catalytic charring effects. A coherent organic/inorganic charred residue was formed during combustion, leading to a strongly reduced heat release rate peak and reduced smoke generation.
Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.
A facile preparation of bio-inspired and morphology controllable catalytic electrode FeS@MoS2/CFC, featuring a carbon fiber cloth (CFC) covered with FeS dotted MoS2 nanosheets, has been established. Synergy between the CFC as a self-standing conductive substrate and the FeS nanoparticle dotted MoS2 nanosheets with abundant active sites makes the noble-metal-free catalytic electrode FeS@MoS2/CFC highly efficient in nitrogen reduction reaction (NRR), with an ammonia production rate of 8.45 mu g h(-1) cm(-2) and excellent long-term stability at -0.5 V in pH neutral electrolyte. Further electrolysis in acidic and alkaline electrolytes revealed the overall NRR catalytic activity of this electrode over a wide pH range.
Spiro-OMeTAD has been the most commonly used hole-transport material in perovskite solar cells. However, this material shows intrinisic drawbacks, such as low hole mobility and conductivity in its pristine form, as well as self-aggregation when deposited as thin film. These are not beneficial properties for efficient hole transport and extraction. In order to address these issues, we have designed a new type of composite hole-transport materials based on a new metal-organic copper complex (CuH) and Spiro-OMeTAD. The incorporation of the molecularly bulky HTM CuH into the Spiro-OMeTAD material efficiently improves the hole mobility and suppresses the aggregation in the Spiro-OMeTAD film. As a result, the conversion efficiencies obtained for perovskite solar cells based on the composite HTM system reached as high as 18.83%, which is superior to solar cells based on the individual hole-transport materials CuH (15.75%) or Spiro-OMeTAD (14.47%) under the same working conditions. These results show that composite HTM systems may constitute an effective strategy to further improve the efficiency of perovskite solar cells.
We report on the experimental determination of the complete two coordinate spatial coherence function of light emitted by a quasi-random laser, implemented on recently introduced dye-doped transparent wood. The spatial coherence was measured by means of a double grating interferometer, which has some advantages over the standard Young's interferometer. Analysis of the spatial coherence reveals that emission from such a material can be considered as a superposition of several spatial modes produced by individual emitters within semi-ordered scattering medium. The overall degree of coherence, (gamma)over-bar, for this quasi-random laser was found to be 0.16 +/- 0.01, having possible applications in speckle free laser imaging and illumination.
Transparent wood composites, with their high strength and toughness, thermal insulation, and excellent transmissivity, offer a route to replace glass for diffusely transmitting windows. Here, conjugated-polymer-based electrochromic devices (ECDs) that switch on-demand are demonstrated using transparent wood coated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a transparent conducting electrode. These ECDs exhibit a vibrant magenta-to-clear color change that results from a remarkably colorless bleached state. Furthermore, they require low energy and power inputs of 3 mWh m−2 at 2 W m−2 to switch due to a high coloration efficiency (590 cm2 C−1) and low driving voltage (0.8 V). Each device component is processed with high-throughput methods, which highlights the opportunity to apply this approach to fabricate mechanically robust, energy-efficient smart windows on a large scale.
Transparent wood is a candidate for use as an energy-saving building material due to its low density (ca. 1.2 g/cm(3)), high optical transmittance (over 85% at 1 mm thickness), low thermal conductivity (0.23 W m(-1) K-1), and good load-bearing performance with tough failure behavior (no shattering). High optical transmittance also makes transparent wood a candidate for optoelectronic devices. In this work, for the first time, perovskite solar cells processed at low temperature (<150 degrees C) were successfully assembled directly on transparent wood substrates. A power conversion efficiency up to 16.8% was obtained. The technologies demonstrated may pave the way for integration of solar cells with light transmitting wood building structures for energy-saving purposes.
Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30wt% of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80wt% of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83%, haze of 75%, thermal conductivity of 0.23WmK(-1), and work-tofracture of 1.2MJm(-3) (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings.
Optically transparent wood combines mechanical performance with optical functionalities is an emerging candidate for applications in smart buildings and structural optics and photonics. The present review summarizes transparent wood preparation methods, optical and mechanical performance, and functionalization routes, and discusses potential applications. The various challenges are discussed for the purpose of improved performance, scaled-up production and realization of advanced applications. This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.
Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.
Transparent wood is an emerging load-bearing material reinvented from natural wood scaffolds with added light management functionalities. Such material shows promising properties for buildings and related structural applications, including its renewable and abundant origin, interesting optical properties, outstanding mechanical performance, low density, low thermal conductivity, and great potential for multifunctionalization. In this study, a detailed summary of recent progress on the transparent wood research topic is presented. Remaining questions and challenges related to transparent wood preparation, optical property measurements, and transparent wood modification and applications are discussed.
Non-leaking, green materials with high content of phase change materials (PCM) can conserve solar energy and contribute to a sustainable society. Here, paraffin was encapsulated by nanocellulose (CNF) through a pickering emulsion method, while simultaneously forming a composite material. The thermodynamic drive for phase separation was confirmed by molecular modeling. Particle formation was characterized by dynamic light scattering and they were processed into stable PCM/CNF composites in the form of PCM paper structures with favorable mechanical properties. The PCM composite was lightweight and showed a solid content of paraffin of more than 72 wt%. Morphology was characterized using FE-SEM. The thermal regulation function of the PCM composite was demonstrated in the form of a model roof under simulated sunlight. No obvious leakage was observed during heating/cooling cycles, as supported by DSC and SAXS data. The PCM composite can be extended to panels used in energy-efficient smart buildings with thermal regulation integrated in load-bearing structures.
Luminescent transparent wood is prepared by combining the complementary properties of naturally grown anisotropic porous wood and luminescent quantum dots. The wood structure introduces strong diffused luminescence and waveguiding, which can potentially be exploited for optoelectronic and photovoltaic applications, such as for planar illumination sources and luminescent buildings/furniture. Images below show the transparency, haze, and luminescence of quantum dot wood.
Two novel organic donor–acceptor−π–acceptor sensitizers, W7 and W8, have been applied in efficient solid-state dye-sensitized solar cells (ssDSSCs). Using 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9′-spirobifluorene (Spiro-OMeTAD) as hole-transport material (HTM), an excellent power conversion efficiency of 6.9% was recorded for W7, together with an excellent photocurrent of 10.51 mA cm–2 and a high open-circuit voltage of 880 mV under standard AM 1.5 G illumination (100 mW cm–2). The solid-state solar cells based on W8 showed an efficiency of 5.2%, with a good photocurrent of 9.55 mA cm–2 and an open-circuit voltage of 870 mV. Compared to that of the well-known WS2 sensitizer, the results show that the performance of the ssDSSC devices can be significantly improved by introducing triphenylamine moiety into their structure. In addition, results of photoinduced absorption spectroscopy show efficient dye regeneration for W7- and W8-based devices. A higher hole conductivity of the W7/HTM and W8/HTM layers compared to that of the WS2/HTM layer was observed, indicating an efficient charge transfer at the interfaces. The results obtained offer insights into the design of reliable and highly efficient ssDSSCs for large-scale applications.
Functional load-bearing materials based on phase-change materials (PCMs) are under rapid development for thermal energy storage (TES) applications. Mesoporous structures are ideal carriers for PCMs and guarantee shape stability during the thermal cycle. In this study, we introduce transparent wood (TW) as a TES system. A shape-stabilized PCM based on polyethylene glycol is encapsulated into a delignified wood substrate, and the TW obtained is fully characterized; also in terms of nano- and mesoscale structures. Transparent wood for thermal energy storage (TW-TES) combines large latent heat (similar to 76 J g(-1)) with switchable optical transparency. During the heating process, optical transmittance increases by 6% and reaches 68% for 1.5 mm thick TW-TES. Characterization of the thermal energy regulation performance shows that the prepared TW-TES composite is superior to normal glass because of the combination of good heat-storage and thermal insulation properties. This makes TW-TES composites interesting candidates for applications in energy-saving buildings.
Polymer materials offer process compatibility, design flexibility, and low cost technology as a multi-functional platform for optical communication and photonics applications. Design and thermal reflowing technology of low loss polymer waveguides, as well as demonstration of transparent wood laser are presented in this paper.
We report on the study of polarization properties of light propagating through transparent wood (TW), which is an anisotropically scattering medium, and consider two cases: completely polarized and totally unpolarized light. It was demonstrated that scattered light distribution is affected by the polarization state of incident light. Scattering is the most efficient for light polarized parallel to cellulose fibers. Furthermore, unpolarized light becomes partially polarized (with a polarization degree of 50%) after propagating through the TW. In the case of totally polarized incident light, however, the degree of polarization of transmitted light is decreased, in an extreme case to a few percent, and reveals an unusual angular dependence on the material orientation. The internal hierarchical complex structure of the material, in particular cellulose fibrils organized in lamellae, is believed to be responsible for the change of the light polarization degree. It was demonstrated that the depolarization properties are determined by the angle between the polarization of light and the wood fibers, emphasizing the impact of their internal structure, unique for different wood species.
Transparent wood (TW) is a biocomposite material with hierarchical structure, which exhibits high optical transmittance and anisotropic light scattering. Here, the relation between anisotropic scattering and the internal structure of transparent wood is experimentally studied and the dependence of scattering anisotropy on material thickness, which characterizes the fraction of ballistic photons in the propagating light, is shown. The limitations of the conven-tional haze, as it is implemented to isotropic materials, are discussed, and a modified characteristic parameter of light scattering—the degree of aniso-tropic scattering is defined. This parameter together with the transport mean free path value is more practical and convenient for characterization of the material scattering properties. It is believed that the generic routine described in this paper can be applied for scattering characterization and comparison of other TW materials of either different thickness, optical quality or based on various wood species.
The report on a study of laser emission from a conceptually new organic material based on transparent wood (TW) with embedded dye Rhodamine 6G molecules is presented in this paper. The lasing performance is compared to a reference organic material containing dye in a poly-methyl-methacrylate matrix. From experimental results, one can conclude that the optical feedback in dye-TW material is realized within cellulose fibers, which play the role of tiny optical resonators. Therefore, the output emission is a collective contribution of individual resonators. Due to this fact, as well as low Q-factor of the resonators/fibers and their length variation, the spectral line of laser emission is broadened up to several nanometers.
In this work we have demonstrated conceptually new organic wood based laser. The laser action is supported by strong scattering due to structural properties of the host material (transparent wood) and can be characterized as quasi random lasing.
Carbazole is a promising core for the molecular design of hole-transport materials (HTMs) for solid-state mesoscopic solar cells (ssMSCs), such as solid-state dye-sensitized solar cells (ssDSSCs) and perovskite solar cells (PSCs) due to its low cost and excellent optoelectronic properties of its derivatives. Although carbazole-based HTMs are intensely investigated in ssMSCs and promising device performance is demonstrated, the fundamental understanding of the impact of linking topology on the properties of carbazole-based HTMs is lacking. Herein, the effect of the linking topology on the optical and electronic properties of a series of carbazole-based HTMs with 2,7-substitution and 3,6-substitution is systematically investigated. The results demonstrate that the 2,7-substituted carbazole-based HTMs display higher hole mobility and conductivity among this series of analogous molecules, thereby exhibiting better device performance. In addition, the conductivity of the HTMs is improved after light treatment, which explains the commonly observed light-soaking phenomenon of ssMSCs in general. All these carbazole-based HTMs are successfully applied in ssMSCs and one of the HTMs X50-based devices yield a promising efficiency of 6.8% and 19.2% in ssDSSCs and PSCs, respectively. This study provides guidance for the molecular design of effective carbazole-based HTMs for high-performance ssMSCs and related electronic devices.
Two novel dopant-free hole-transport materials (HTMs) with spiro[dibenzo[c,h]xanthene-7,9-fluorene] (SDBXF) skeletons were prepared via facile synthesis routes. A power conversion efficiency of 15.9% in perovskite solar cells is attained by using one HTM without dopants, which is much higher than undoped Spiro-OMeTAD-based devices (10.8%). The crystal structures of both new HTMs were systematically investigated to reveal the reasons behind such differences in performance and to indicate the design principles of more advanced HTMs.
The power-conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased rapidly from about 4% to 22% during the past few years. One of the major challenges for further improvement of the efficiency of PSCs is the lack of sufficiently good hole transport materials (HTMs) to efficiently scavenge the photogenerated holes and aid the transport of the holes to the counter-electrode in the PSCs. In this study, we tailor-made two low-cost spiro[fluorene-9,9′-xanthene] (SFX)-based 3D oligomers, termed X54 and X55, by using a one-pot synthesis approach for PSCs. One of the HTMs, X55, gives a much deeper HOMO level and a higher hole mobility and conductivity than the state-of-the-art HTM, Spiro-OMeTAD. PSC devices based on X55 as the HTM show a very impressive PCE of 20.8% under 100 mW·cm−2 AM1.5G solar illumination, which is much higher than the PCE of the reference devices based on Spiro-OMeTAD (18.8%) and X54 (13.6%) under the same conditions.
Two D-A-D-structured hole-transport materials (YN1 and YN2) have been synthesized and used in perovskite solar cells. The two HTMs have low-lying HOMO levels and impressive mobility. Perovskite-based solar cells (PSCs) fabricated with YN2 showed a power conversion efficiency (PCE) value of 19.27% in ambient air, which is significantly higher than that of Spiro-OMeTAD (17.80%). PSCs based on YN1 showed an inferior PCE of 16.03%. We found that the incorporation of the stronger electron-withdrawing group in the HTM YN2 improves the PCE of PSCs. Furthermore, the YN2-based PSCs exhibit good long-term stability retaining 91.3% of its initial efficiency, whereas PSCs based on Spiro-OMeTAD retained only 42.2% after 1000 h lifetime (dark conditions). These promising results can provide a new strategy for the design of D-A-D HTMs for PSC applications in future.
The development of a highly active manganese-based water oxidation catalyst in the design of an ideal artificial photosynthetic device operating under neutral pH conditions remains a great challenge, due to the instability of pivotal Mn3+ intermediates. We report here defective and "c-disordered" layered manganese oxides (MnOx-300) formed on a fluorine-doped tin oxide electrode by constant anodic potential deposition and subsequent annealing, with a catalytic onset (0.25 mA/cm(2)) at an overpotential (eta) of 280 mV and a benchmark catalytic current density of 1.0 mA/cm(2) at an overpotential (eta) of 330 mV under neutral pH (1 M potassium phosphate). Steady current density above 8.2 mA/cm(2) was obtained during the electrolysis at 1.4 V versus the normal hydrogen electrode for 20 h. Insightful studies showed that the main contributing factors for the observed high activity of MnOx-300 are (i) a defective and randomly stacked layered structure, (ii) an increased degree of Jahn-Teller distorted Mn3+ in the MnO6 octahedral sheets, (iii) effective stabilization of Mn3+, (iv) a high surface area, and (v) improved electrical conductivity. These results demonstrate that manganese oxides as structural and functional models of an oxygen-evolving complex (OEC) in photosystem II are promising catalysts for water oxidation in addition to Ni/Co-based oxides/hydroxides.
The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx/CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx/CNT/NF electrode gives a benchmark catalytic current density (10 mA cm−2) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm−2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.
Perovskite photovoltaics have recently attracted extensive attention due to their unprecedented high power conversion efficiencies (PCEs) in combination with primitive manufacturing conditions. However, the inherent polycrystalline nature of perovskite films renders an exceptional density of structural defects, especially at the grain boundaries (GBs) and film surfaces, representing a key challenge that impedes the further performance improvement of perovskite solar cells (PSCs) and large solar module ambitions towards commercialization. Here, a novel strategy is presented utilizing a simple ethylammonium chloride (EACl) additive in combination with a facile solvent bathing approach to achieve high quality methyammonium lead iodide (MAPbI3) films. Well-oriented, micron-sized grains were observed, which contribute to an extended carrier lifetime and reduced trap density. Further investigations unraveled the distinctively prominent effects of EACl in modulating the perovskite film quality. The EACl was found to promote the perovskite grain growing without undergoing the formation of intermediate phases. Moreover, the EACl was also revealed to deplete at relative low temperature to enhance the film quality without compromising the beneficial bandgap for solar cell applications. This new strategy boosts the power conversion efficiency (PCE) to 20.9% and 19.0% for devices with effective areas of 0.126 cm2 and 1.020 cm2, respectively, with negligible current hysteresis and enhanced stability. Besides, perovskite films with a size of 10 × 10 cm2, and an assembled 16 cm2(5 × 5 cm2 module) perovskite solar module with a PCE of over 11% were constructed.
Two zinc-based coordination complexes Y3 and Y4 have been synthesized and characterized, and their performance as hole-transport materials (HTMs) for perovskite solar cells (PSCs) has been investigated. The complex Y3 contains two separate ligands, and the molecular structure can be seen as a disconnected porphyrin ring. On the other hand, Y4 consists of a porphyrin core and therefore is a more extended conjugated system as compared to Y3. The optical and redox properties of the two different molecular complexes are comparable. However, the hole mobility and conductivity of Y4 as macroscopic material are remarkably higher than that of Y3. Furthermore, when employed as hole-transport materials in perovskite solar cells, cells containing Y4 show a power conversion efficiency (PCE) of 16.05%, comparable to the Spiro-OMeTAD-based solar cells with an efficiency around 17.08%. In contrast, solar cells based on Y3 show a negligible efficiency of about 0.01%. The difference in performance of Y3 and Y4 is analyzed and can be attributed to the difference in packing of the nonplanar and planar building blocks in the corresponding materials.
Triphenylamine-based metal complexes were designed and synthesized via coordination to Ni(II), Cu(II), and Zn(II) using their respective acetate salts as the starting materials. The resulting metal complexes exhibit more negative energy levels (vs vacuum) as compared to 2,2', 7,7'-tetrakis(N, N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), high hole extraction efficiency, but low hole mobilities and conductivities. Application of dopants typically used for Spiro-OMeTAD was not successful, indicating a more complicated mechanism of partial oxidation besides the redox potential. However, utilization as hole-transport material was successful, giving a highest efficiency of 11.1% under AM 1.5G solar illumination.
Four different functional groups including amino (-NH2), phosphine (-PH2), hydroxyl (-OH), and thiol (-SH) were combined with POSS (polyhedral oligomeric silsesquioxane) molecules to investigate how functional groups affect the surface passivation of POSS systems. Results from density-functional theory (DFT) calculations indicate that functional group amino (-NH2) with adsorption energy 86 (56) kJ mol(-1) is consistently better than that of thiol (-SH) with adsorption energy 68 (43) kJ mor(-1) for different passivation mechanisms. Theoretical studies on the analogous POSS-OH and POSS-PH2 systems show similar adsorption energies. Two of the systems were also investigated experimentally; aminopropyl isobutyl POSS (POSS-NH2) and mercaptopropyl isobutyl POSS (POSS-SH) were applied as passivation materials for MAPbI(3) (MA = methylammonium) perovskite and (FA)(0.85)(MA)(0.15)Pb(I-3)(0.85)(Br-3)(0)(.15)(FA = formamidinium) perovskite films. The same conclusion was drawn based on the results from contact angle studies, X-ray diffraction (XRD), and the stability of solar cells in ambient atmosphere, indicating the vital importance of choice of functional groups for passivation of the perovskite materials.