Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Exploring the vibration control potential of magneto-sensitive rubber2005Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Two new aspects of the dynamic behaviour in the audible frequency range of magneto-sensitive (MS) rubber are highlighted: the existence of an amplitude dependence of the shear modulus—referred to as the Fletcher–Gent effect—for even small displacements, and the appearance of large MS effects. These results have been obtained experimentally and are subsequently used to model two examples of magneto-sensitive rubber isolators to show how by means of MS rubber they can be improved. The first model calculates the transfer stiffness of a torsionally excited isolator and the second one the energy flow into the foundation for a bushing inserted between a vibrating mass and an infinite plate. In both examples notable improvements in isolation can be obtained

  • 2.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Magneto-sensitive rubber in the audible frequency range2006Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    The dynamic behaviour in the audible frequency range of magneto-sensitive (MS) rubber is the focus of this thesis consisting of five papers A-E. Paper A presents results drawn from experiments on samples subjected to different constant shear strains over varying frequencies and magnetic fields. Main features observed are the existence of an amplitude dependence of the shear modulus referred to as the Fletcher-Gent effect for even small displacements, and the appearance of large MS effects. These results are subsequently used in Paper B and C to model two magneto-sensitive rubber isolators, serving to demonstrate how, effectively, by means of MS rubber, these can be readily improved. The first model calculates the transfer stiffness of a torsionally excited isolator, and the second one, the energy flow into the foundation for a bushing inserted between a vibrating mass and an infinite plate. In both examples, notable improvements in isolation are obtainable. Paper D presents a non-linear constitutive model of MS rubber in the audible frequency range. Characteristics inherent to magneto-sensitive rubber within this dynamic regime are defined: magnetic sensitivity, amplitude dependence, elasticity and viscoelasticity. A very good agreement with experimental values is obtained. In Paper E, the magneto-sensitive rubber bushing stiffness for varying degrees of magnetization is predicted by incorporating the non-linear magneto-sensitive audio frequency rubber model developed in Paper D, into an effective engineering formula for the torsional stiffness of a rubber bushing. The results predict, and clearly display, the possibility of controlling over a large range through the application of a magnetic field, the magneto-sensitive rubber bushing stiffness.

  • 3.
    Blom, Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    A non-linear constitutive audio frequency magneto-sensitive rubber model including amplitude, frequency and magnetic field dependence.2011In: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 330, no 5, p. 947-954Article in journal (Refereed)
    Abstract [en]

    A novel constitutive model of magneto-sensitive rubber in the audible frequency range is presented. Characteristics inherent to magneto-sensitive rubber within this dynamic regime are defined: magnetic sensitivity, amplitude dependence, elasticity and viscoelasticity. Prior to creating the model assumptions based on experimental observations concerning these components are formulated. The first observation is that not only does the rubber display a strong amplitude dependence even for small strains, but also the magnetic sensitivity is strongly amplitude dependent. The second and third are, respectively, that the elastic component is magneto-sensitive, whereas the viscoelastic dependence on magnetic induction appears to be small. Thus, the model is developed from these assumptions and parameters are optimized with respect to experimental values for one case and subsequently validated for others; a very good agreement is obtained.

  • 4.
    Blom, Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Amplitude and frequency dependence of magneto-sensitive rubber in a wide frequency range2005In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 24, no 5, p. 656-662Article in journal (Refereed)
    Abstract [en]

    Two new aspects of the dynamic behaviour in the audible frequency range of magneto-sensitive (MS) rubber are highlighted: the existence of an amplitude dependence of the shear modulus - referred to as the Fletcher-Gent effect - for even small displacements, and the appearance of large MS effects. In order to illustrate these two features, results are presented of measurements performed in the audible frequency range on two different kinds of rubber: silicone and natural rubber with a respective iron particle volume concentration of 33%. The particles used are of irregular shape and randomly distributed within the rubber. An external magnetic field of 0-0.8 T is applied. Both kinds of rubber are found to be strongly amplitude dependent and, furthermore, displaying large responses to externally applied magnetic fields - a maximum of 115%. Also included are graphs of measurements on silicone and natural rubber devoid of iron particles. Those results support the conclusion that introducing iron particles in the rubber gives rise to a strong, non-negligible, amplitude dependence in the entire frequency range.

  • 5.
    Blom, Peter
    et al.
    KTH, Superseded Departments, Vehicle Engineering.
    Kari, Leif
    KTH, Superseded Departments, Vehicle Engineering.
    Magneto-rheological rubber isolators in the audible frequency range2004In: Nordic Vibration Research, 2004Conference paper (Other academic)
  • 6.
    Blom, Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Magneto-sensitive rubber in the audible frequency range2005In: CONSTITUTIVE MODELS FOR RUBBER IV / [ed] Per-Erik Austrell, Leif Kari, London: Taylor & Francis, 2005Conference paper (Refereed)
  • 7.
    Blom, Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Smart audio frequency energy flow control by magneto-sensitive rubber isolators2008In: Smart materials and structures (Print), ISSN 0964-1726, E-ISSN 1361-665X, Vol. 17, no 1Article in journal (Refereed)
    Abstract [en]

    A magneto-sensitive rubber isolator inserted between a source and an infinite plate is modelled in the audible frequency range, and the energy flow into the plate with the rubber subjected to a magnetic field applied perpendicular to the axial displacement is calculated. Subsequently the result is compared to the corresponding energy flow for zero magnetic induction; upon the application of an external magnetic field the rubber becomes stiffer, thus shifting the internal resonances of the isolator. This is a fast and reversible process enabling adaption of the isolator to rapidly changing audio frequency conditions by simply turning on and off a magnetic field. In the application example considered, the energy flow into the plate at the first internal dynamic peak stiffness frequency is reduced by approximately 7 dB-a large difference in a sound and vibration context-by inducing magnetic saturation of the rubber.

  • 8.
    Blom, Peter
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    The frequency, amplitude and magnetic field dependent torsional stiffness of a magneto-sensitive rubber bushing2011In: International Journal of Mechanical Sciences, ISSN 0020-7403, E-ISSN 1879-2162, Vol. 60, no 1, p. 54-58Article in journal (Refereed)
    Abstract [en]

    A dynamic torsional stiffness model of a magneto-sensitive circular annular rubber bushing is presented where influences of frequency, amplitude and magnetic field dependence are included. This is achieved by employing a newly developed non-linear magneto-sensitive audio frequency constitutive equation in an engineering formula for the torsional stiffness of a rubber bushing. The engineering stiffness formula predicts the frequency and amplitude dependent stiffness in a simple way, based on geometric dimensions and the shear modulus. The shear modulus is provided by the rubber model. The results from these calculations predict and clearly display the possibility of controlling over a large frequency range, through the application of a magnetic field, the magneto-sensitive rubber bushing stiffness.

  • 9.
    Kari, Leif
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Constitutive model for magneto-sensitive rubber in the audible frequency range including amplitude, frequency and magnetic field dependence2008In: CONSTITUTIVE MODELS FOR RUBBER V / [ed] Boukamel, A; Laiarinandrasana, L; Meo, S; Verron, E, LONDON: TAYLOR & FRANCIS LTD , 2008, p. 357-360Conference paper (Refereed)
    Abstract [en]

    In presenting a non-linear constitutive model for magneto-sensitive rubber in the frequency range, the influences of dynamic amplitude, frequency and magnetic field are investigated. The model is based on a non-linear, smooth Coulomb friction and fractional derivative model with parametric magnetic field dependence. Very good agreement between model and measurement results are obtained throughout the whole magnetic field, amplitude and frequency range considered.

  • 10.
    Kari, Leif
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    High performing magneto-sensitive materials for noise and vibration applications2006In: Recent Advances in Structural Dynamics, 2006Conference paper (Refereed)
  • 11.
    Kari, Leif
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Innovative noise and vibration control by magneto-sensitive materials2005In: Noise and Vibration: Emerging Methods, NOVEM, 2005Conference paper (Other academic)
  • 12.
    Kari, Leif
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Blom, Peter
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Magneto-sensitive rubber in a noise reduction context: exploring the potential2005In: Plastics, rubber and composites, ISSN 1465-8011, E-ISSN 1743-2898, Vol. 34, no 8, p. 365-371Article in journal (Refereed)
    Abstract [en]

    In a noise reduction context, magneto-sensitive (MS) rubber is likely to become a. reality in the very near future. This conclusion is reached from the following: a review of the rapidly growing literature on the subject, a discussion around experimentally obtained data on magneto-sensitive rubber, and finally a computer simulation of a MS rubber isolator which seeks to illustrate the utility and great potential of this smart material within the audible frequency range. In contrast to normal rubber, magneto-sensitive rubber contains small iron particles that respond to externally applied magnetic fields, consequently altering the mechanical properties of the rubber. This response increases for small strains strengthening further the link to structure-borne sound applications where displacement amplitudes are usually small; this is borne out by vibration measurements in a running car engine, included for the purpose of placing experimental data on MS rubber in a real context.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf