Change search
Refine search result
1234 1 - 50 of 185
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Ahmed, Aseel Bala
    et al.
    Jibril, B.
    Danwittayakul, S.
    Dutta, Joydeep
    Sultan Qaboos Univ, Water Res Ctr, Chair Nanotechnol, Muscat, Oman.
    Microwave-enhanced degradation of phenol over Ni-loaded ZnO nanorods catalyst2014In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 156-157, 456-465 p.Article in journal (Refereed)
    Abstract [en]

    Nickel was loaded onto hydrothermally-grown ZnO nanorods on cordierite substrates and tested as catalysts in microwave-enhanced degradation of phenol from its aqueous solution (100 ppm) at 70 degrees C. Effects of metal loadings (1, 10 and 20 mM impregnation solutions) on the degradation of phenol in aqueous solution was investigated. The catalyst performances were monitored based on phenol degradation, product distributions and carbon dioxide (CO2) evolutions. Based on the type of the catalysts, two different mechanistic pathways for the decomposition were observed-through catechol and/or hydroquinone as intermediates. It was found that the 10mM nickel loaded sample catalyzed the degradation through one pathway with hydroquinone as the benzenediol intermediate formed, while the 20 mM nickel impregnated sample catalyzed the reaction through two pathways, producing catechol as well as hydroquinone by products. These differences in reaction pathways were attributed to the variation in the composition of the nickel compounds and surface structures between the two catalysts. Furthermore, the effect of hydrogen peroxide (H2O2) as an oxidant was explored. It was found that although addition of H2O2 led to an increase in the degree of phenol degradation, it also led to enhanced catalyst leaching. There was also an increase in CO2 evolution due to the addition of H2O2. It was observed that 20 mM nickel-loaded sample without the addition of H2O2 exhibited optimum performance in terms of phenol degradation and CO2 evolution with no drawback of catalyst leaching. Catalytic microwave enhanced degradation is an effective means for the removal of dissolved organic compounds from wastewater.

  • 2. Al Alawai, Reem
    et al.
    Laxman, karthik
    Dastgir, Sarim
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Sultan Qaboos University, , Oman.
    Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, 200-206 p.Article in journal (Refereed)
    Abstract [en]

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  • 3. Al-Fori, M.
    et al.
    Dobretsov, S.
    Myint, M. T. Z.
    Dutta, Joydeep
    Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, PO Box 17, Postal Code - 123, Al Khoud, Muscat, Oman.
    Antifouling properties of zinc oxide nanorod coatings2014In: Biofouling, ISSN 0892-7014, Vol. 30, no 7, 871-882 p.Article in journal (Refereed)
    Abstract [en]

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn2+ ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.

  • 4. Al-Hamdi, A. M.
    et al.
    Sillanpää, M.
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Sultan Qaboos University, Oman.
    Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles2016In: Research on chemical intermediates (Print), ISSN 0922-6168, E-ISSN 1568-5675, Vol. 42, no 4, 3055-3069 p.Article in journal (Refereed)
    Abstract [en]

    Lanthanum (La)-doped tin dioxide (SnO<inf>2</inf>) nanoparticles were synthesized by a modified sol–gel method at room temperature. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The photocatalytic activity of La:SnO<inf>2</inf> samples were investigated by studying the degradation profile of phenol and its by-products in water. The treated samples were analyzed by HPLC–UV and a UV–Vis spectrophotometer. Benzoquinone, catechol, resorcinol, hydroquinone, acetic acid, and 2-propanol were identified as phenol degradation intermediates. Maximum concentration acquired was in the order of catechol, resorcinol, hydroquinone, and benzoquinone, which was observed in the beginning stages while iso-propanol and acetic acid were observed in the final stages of phenol degradation. We achieved a complete photodegradation of a 10 ppm aqueous phenol solution and intermediates with 0.6 % of SnO<inf>2</inf>:La nanoparticles in 120 min under artificial solar irradiation. A maximum degradation rate constant of 0.02228 min−1 of propanol and a minimum of acetic acid 0.013412 min−1 were recorded at 37 °C.

  • 5. Al-Hamdi, A. M.
    et al.
    Sillanpää, M.
    Dutta, Joydeep
    Department of Nanotechnology, Water Research Center, Sultan Qaboos University, 123 Al-Khoudh, Musqat, Oman.
    Photocatalytic degradation of phenol in aqueous solution by rare earth-doped SnO2 nanoparticles2014In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 49, no 14, 5151-5159 p.Article in journal (Refereed)
    Abstract [en]

    The influence of heterogeneous semiconductors on the photodegradation of phenol in water was investigated using doped tin dioxide (SnO2) nanoparticles. Photocatalysts of SnO2 were synthesized with lanthanum (La), cerium (Ce), and neodymium (Nd) dopants. These photocatalysts were synthesized from tin tetrachloride by sol-gel method with different dopant concentrations, and its photocatalytic degradation was investigated up to 0.8 % under UV-A light in aqueous suspensions. The photocatalytic oxidation reactions were studied by varying photocatalyst composition, light intensity, reaction time, pH of the reaction medium, and phenol concentration. It was found that the photocatalytic activity of rare earth-doped SnO2 for phenol decomposition under UV light irradiation was considerably higher than that of pure SnO2 nanoparticles. The experimental results also indicate that more than 95 % phenol was effectively oxidized in the presence of an aqueous suspension of La: SnO2 nanoparticles within 120 min of UV light irradiation.

  • 6. Al-Hamdi, Abdullah M.
    et al.
    Sillanpaa, Mika
    Bora, Tanujjal
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 370, 229-236 p.Article in journal (Refereed)
    Abstract [en]

    Photodegradation of phenol in the presence of tin dioxide (SnO2) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO2. In this study antimony (Sb) doped tin dioxide (SnO2) nanoparticles were prepared at a low temperature (80 degrees C) by a sol-gel method and studied for its photo catalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO2:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO2 nanoparticles with 10 mg L-1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  • 7. Al-Hamdi, Abdullah M.
    et al.
    Sillanpaa, Mika
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Gadolinium doped tin dioxide nanoparticles: an efficient visible light active photocatalyst2015In: Journal of Rare Earths, ISSN 1002-0721, Vol. 33, no 12, 1275-1283 p.Article in journal (Refereed)
    Abstract [en]

    Photocatalytic degradation of phenol with sol-gel prepared rare earth doped tin dioxide (SnO2) nanoparticles was reported. Gadolinium doped tin dioxide (SnO2:Gd) nanoparticles were found to absorb higher visible light compared to lanthanum, neodymium and cerium doped materials that were studied in detail. Photocatalytic degradation of phenol under artificial white light and sunlight in the presence of SnO2: Gd nanoparticles was studied with high performance liquid chromatography (HPLC), capillary electrophoresis (CE), total organic carbon (TOC) measurements and the determination of chemical oxygen demand (COD). Clear correlations between the results obtained from these multiple measurements were found, and a kinetic pathway for the degradation process was proposed. Within 150 min of solar irradiation, the TOC of a 10 ppm phenol solution in water was reduced by 95%-99%, thus demonstrating that SnO2: Gd nanoparticles are efficient visible light photocatalysts.

  • 8. Al-Hamdi, Abdullah M
    et al.
    Sillanpää, Mika
    Dutta, Joydeep
    Water Research Center, Sultan Qaboos University, Oman.
    Photocatalytic degradation of phenol by iodine doped tin oxide nanoparticles under UV and sunlight irradiation2015In: Journal of Alloys and Compounds, ISSN 0925-8388, Vol. 618, 366-371 p.Article in journal (Refereed)
    Abstract [en]

    Iodine doped tin oxide (SnO2:I) nanoparticles were prepared by sol-gel synthesis and their photocatalytic activities with phenol as a test contaminant were studied. In the presence of the catalysts, phenol degradation under direct sunlight was comparable to what was achieved under laboratory conditions. Photocatalytic oxidation reactions were studied by varying the catalyst loading, light intensity, illumination time, pH of the reactant and phenol concentration. Upon UV irradiation in the presence of SnO2:I nanoparticles, phenol degrades very rapidly within 30 min, forming carboxylic acid which turns the solution acidic. Phenol degradation rate with 1% iodine doped SnO2 nanoparticles is at least an order of magnitude higher compared to the degradation achieved through undoped SnO2 nanoparticles under similar illumination conditions.

  • 9. Al-Hinai, A. T.
    et al.
    Al-Hinai, M. H.
    Dutta, Joydeep
    Sultan Qaboos Univ, Water Res Ctr, Al Khoud 123, Oman.
    Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media2014In: Materials research bulletin, ISSN 0025-5408, E-ISSN 1873-4227, Vol. 49, no 1, 645-650 p.Article in journal (Refereed)
    Abstract [en]

    Potential-pH diagram assisted-design for controlled precipitation is an attractive method to obtain engineered binary and ternary oxide particles. Aqueous synthesis conditions of zinc stannate (ZnSnO3) particles at low temperature were formulated with the assistance of potential-pH diagram. The pH of a solution containing stoichiometric amounts of Zn2+ and Sn4+ was controlled for the precipitation in a one pot synthesis step at room temperature (25 degrees C). The effect of the concentration of the reactants on the particle size was studied by varying the concentration of the precursor (Zn2+ + Sn4+) solution. Scanning electron micrographs show that the particles are monodispersed micron sized cubes formed by the self-organization olnano-sized crystallites. The obtained microcubes characterized by X-ray Diffraction and thermo gravimetric analysis (TGA) show that the particles are in ZnSnO3.3H(2)O form.

  • 10. Al-Hinai, M. H.
    et al.
    Al-Hinai, A. T.
    Dutta, Joydeep
    Water Research Center, Sultan Qaboos University, 123 Al Khoud, Oman.
    Phase transformation behavior of zinc metastannates obtained by aqueous precipitation at different temperatures2014In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 49, no 20, 7282-7289 p.Article in journal (Refereed)
    Abstract [en]

    Phase transformation studies in ZnO-SnO2 system from zinc metastannate (ZnSnO3) to zinc orthostannate (Zn2SnO4) with annealing temperature are reported. Non-centrosymmetric oxides show unique symmetry dependent and spontaneous polarization properties, which are technologically important. ZnSnO3 particles were synthesized by a simple aqueous synthesis at low temperatures designed with the assistance of potential-pH diagrams. ZnSnO3 particles synthesized at 4 A degrees C are more porous losing the ilmenite structure upon annealing at 200 A degrees C, while the other samples prepared at higher temperatures (25-65 A degrees C) becomes amorphous at 300 A degrees C. The phase transformation into the inverse spinel orthostannate phase occurs around 750 A degrees C in all the samples.

  • 11. Al-Hinai, Muna H.
    et al.
    Sathe, Priyanka
    Al-Abri, Mohammed Z.
    Dobretsov, Sergey
    Al-Hinai, Ashraf T.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Antimicrobial Activity Enhancement of Poly(ether sulfone) Membranes by in Situ Growth of ZnO Nanorods2017In: ACS OMEGA, ISSN 2470-1343, Vol. 2, no 7, 3157-3167 p.Article in journal (Refereed)
    Abstract [en]

    Composite poly(ether sulfone) membranes integrated with ZnO nanostructures either directly blended or grown in situ have enhanced antibacterial activity with improved functionality in reducing the biofouling in water treatment applications. The pore structure and surface properties of the composite were studied to investigate the effect of the addition of ZnO nanostructures. The hydrophilicity of the blended membranes increased with a higher content of ZnO nanoparticles in the membrane (2-6%), which could be further controlled by varying the growth conditions of ZnO nanorods on the polymer surface. Improved water flux, bovine serum albumin rejection, and inhibition of Escherichia coli bacterial growth under visible light irradiation was observed for the membranes decorated with ZnO nanorods compared to those in the membranes simply blended with ZnO nanoparticles. No regrowth of E. coli was recorded even 2 days after the incubation.

  • 12. Al-Naamani, Laila
    et al.
    Dobretsov, Sergey
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications2016In: Innovative Food Science & Emerging Technologies, ISSN 1466-8564, E-ISSN 1878-5522, Vol. 38, 231-237 p.Article in journal (Refereed)
    Abstract [en]

    In this study antimicrobial properties of chitosan and chitosan-zinc oxide (ZnO) nanocomposite coatings on PE films were studied. Oxygen plasma pretreatment of PE films led to increased adhesion by 2% of chitosan and the nanocomposite coating solutions to the packaging films. Scanning Electron Microscopy (SEM) revealed uniform coatings on PE surfaces. Incorporation of ZnO nanoparticles into the chitosan matrix resulted in 42% increase in solubility; swelling decreased by 80% while the water contact angle (WCA) increased from 60 to 95 compared to chitosan coating. PE coated with chitosan-ZnO nanocomposite films completely inactivated and prevented the growth of food pathogens, while chitosan-coated films showed only 10-fold decline in the viable cell counts of Salmonella enterica, Escherichia coli and Staphylococcus aureus after 24-h incubation compared to the control. Industrial relevance: One of the greatest challenges of food industry is microbial contamination. The present study suggests that PE coating with chitosan-ZnO nanocomposite is a promising technique to enhance antimicrobial properties of the films. Chitosan-ZnO nanocomposite coatings improved antibacterial properties of PE by inactivating about 99.9% of viable pathogenic bacteria. Hence, our results show the effectiveness of the nanocomposite coating in the development of active food packaging in order to prolong the shelf life of food products.

  • 13. Al-Naamani, Laila
    et al.
    Dobretsov, Sergey
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Burgess, J. Grant
    Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling2017In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 168, 408-417 p.Article in journal (Refereed)
    Abstract [en]

    Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling. (C) 2016 Elsevier Ltd. All rights reserved.

  • 14. Al-Saadi, Mubarak J.
    et al.
    Al-Harthi, Salim H.
    Kyaw, Htet H.
    Myint, Myo T. Z.
    Bora, Tanujjal
    Laxman, Karthik
    Al-Hinai, Ashraf
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods2017In: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 12, 22Article in journal (Refereed)
    Abstract [en]

    We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV (similar to 1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.

  • 15. Al-Sabahi, Jamal
    et al.
    Bora, Tanujjal
    Al-Abri, Mohammed
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol2016In: Materials, ISSN 1996-1944, E-ISSN 1996-1944, Vol. 9, no 4, 238Article in journal (Refereed)
    Abstract [en]

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  • 16. Alsharaeh, E. H.
    et al.
    Bora, T.
    Soliman, A.
    Ahmed, Faheem
    Bharath, G.
    Ghoniem, M. G.
    Abu-Salah, Khalid M.
    Dutta, Joydeep
    Sol-Gel-Assisted Microwave-Derived Synthesis of Anatase Ag/TiO2/GO Nanohybrids toward Efficient Visible Light Phenol Degradation2017In: CATALYSTS, ISSN 2073-4344, Vol. 7, no 5, 133Article in journal (Refereed)
    Abstract [en]

    A simple microwave-assisted (MWI) wet chemical route to synthesize pure anatase phase titanium dioxide (TiO2) nanoparticles (NPs) is reported here using titanium tetrachloride (TiCl4) as starting material. The as-prepared TiO2 NPs were characterized by electron microscopy, X-ray diffraction, UV/visible absorption spectroscopy, and infrared and Raman spectroscopic techniques. Further modification of the anatase TiO2 NPs was carried out by incorporating plasmonic silver (Ag) NPs and graphene oxide (GO) in order to enhance the visible light absorption. The photocatalytic activities of the anatase TiO2, Ag/TiO2, and Ag/TiO2/GO nanocomposites were evaluated under both ultraviolet (UV) and visible light irradiation using phenol as a model contaminant. The presence of Ag NPs was found to play a significant role to define the photocatalytic activity of the Ag/TiO2/GO nanocomposite. It was found that the Ag performed like a sink under UV excitation and stored photo-generated electrons from TiO2, whereas, under visible light excitation, the Ag acted as a photosensitizer enhancing the photocatalytic activity of the nanocomposite. The detailed mechanism was studied based on photocatalytic activities of Ag/TiO2/GO nanocomposites. Therefore, the as-prepared Ag/TiO2/GO nanocomposite was used as photocatalytic materials under both UV and visible light irradiation toward degradation of organic molecules.

  • 17. Anceno, A J
    et al.
    Bonduush, I
    Dutta, Joydeep
    Center of Excellence in Nanotechnology, Asian Institute of Technology,Thailand.
    Stuetz, R M
    Shipin, O V
    Of Quantum Dots and Microbes: Smart materials for fluorescence based characterization of environmental microflora2013In: Proc. of the Intl. Conf. on Future Trends in Structural, Civil, Environmental and Mechanical Engineering – FTSCEM 2013, SEEK Digital Library , 2013, 61-65 p.Conference paper (Refereed)
    Abstract [en]

    Manganese doped zinc sulfide (ZnS:Mn2+) quantum dots (QDs) were surface derivatized for use as versatile fluorescent reporters is the study of microorganisms of relevance in environmental bioprocesses. When intracellularly introduced into permeabilized target bacterial cells, mercaptoacetic acid (MAA) or dithiothreitol (DTT) treatedZnS:Mn2+QDs proved to be good visualization enhancers for morphological observations with epifluorescence microscopy. Alternatively, cell surface adhesion of chitosan capped ZnS:Mn2+QDs also led to a similar effect, namely of QD enhanced contrast of target cells from intrinsic background fluorescence. When DTT surface derivatized ZnS:Mn2+QDs were conjugated with oligonucleotide probes and used in fluorescent in situ hybridization (FISH) analysis, specific detection of bacterial strains representative ofsome proteobacterial classes was achieved.

  • 18. Anceno, A. J.
    et al.
    Bonduush, I.
    Shipin, O. V.
    Dutta, Joydeep
    Center of Excellence in Nanotechnology, Asian Institute of Technology.
    Nanoparticle self-assembly via facile (Bio)chemistry: Charge-stabilized metal nanoparticles on microbial cell surfaces2010In: Journal of Bionanoscience, ISSN 1557-7910, Vol. 4, no 1-2, 92-98 p.Article in journal (Refereed)
    Abstract [en]

    With a view of achieving up-scaled nutrition-driven biomimetic assembly of gold nanoparticles, the self-assembly of glutamate- or chitosan stabilized colloidal gold was attempted using viable microbial cells as templates in nutrient rich or poor assembly environment. The likelihood of achieving self-assembly given the type of microbial template, nanoparticle stabilization and predominant biochemical conditions is discussed. While the realization of industrially useful microcomponents from the assembly route maybe technically remote as yet, it was found that present nanoparticles and suitable assembly environment find immediate application in conventional microscopy or as contrast enhancers in the routine study of microbial cell morphology.

  • 19.
    Ashour, Radwa M.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Abdelhamid, Hani Nasser
    Abdel-Magied, Ahmed F.
    Abdel-Khalek, Ahmed A.
    Ali, M. M.
    Uheida, Abdusalam
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    Zou, Xiaodong
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Rare Earth Ions Adsorption onto Graphene Oxide Nanosheets2017In: Solvent extraction and ion exchange, ISSN 0736-6299, E-ISSN 1532-2262, Vol. 35, no 2, 91-103 p.Article in journal (Refereed)
    Abstract [en]

    Graphene oxide (GO) was synthesized and used as a coagulant of rare earth elements (REEs) from aqueous solution. Stability and adsorption capacities were exhibited for target REEs such as La(III), Nd(III), Gd(III), and Y(III). The parameters influencing the adsorption capacity of the target species including contact time, pH, initial concentration, and temperature were optimized. The adsorption kinetics and thermodynamics were studied. The method showed quantitative recovery (99%) upon desorption using HNO3 acid (0.1 M) after a short contact time (15 min).

  • 20.
    Ashour, Radwa M.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM. Nuclear Materials Authority, Egypt.
    El-sayed, R.
    Abdel-Magied, A. F.
    Abdel-khalek, A. A.
    Ali, M. M.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Uheida, Abdusalam
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies2017In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 327, 286-296 p.Article in journal (Refereed)
    Abstract [en]

    Separation of rare earth ions (RE3+) from aqueous solution is a tricky problem due to their physico-chemical similarities of properties. In this study, we investigate the influence of the functionalized ligands on the adsorption efficiency and selective adsorption of La3+, Nd3+, Gd3+ and Y3+ from aqueous solution using Magnetite (Fe3O4) nanoparticles (NPs) functionalized with citric acid (CA@Fe3O4 NPs) or L-cysteine (Cys@Fe3O4 NPs). The microstructure, thermal behavior and surface functionalization of the synthesized nanoparticles were studied. The general adsorption capacity of Cys@Fe3O4 NPs was found to be high (98 mg g−1) in comparison to CA@Fe3O4 NPs (52 mg g−1) at neutral pH 7.0. The adsorption kinetic studies revealed that the adsorption of RE3+ ions follows a pseudo second-order model and the adsorption equilibrium data fits well to the Langmuir isotherm. Thermodynamic studies imply that the adsorption process was endothermic and spontaneous in nature. Controlled desorption within 30 min of the adsorbed RE3+ ions from both Cys@Fe3O4 NPs and CA@Fe3O4 NPs was achieved with 0.5 M HNO3. Furthermore, Cys@Fe3O4 NPs exhibited a higher separation factor (SF) in the separation of Gd3+/La3+, Gd3+/Nd3+, Gd3+/Y3+ ions compared to CA@Fe3O4 NPs.

  • 21. Bacsa, W. S.
    et al.
    Dutta, Joydeep
    Vibrational Raman spectroscopy of silicon powders produced by plasma enhanced chemical vapor deposition1995In: Analusis, Vol. 23, no 10, 531-532 p.Article in journal (Refereed)
  • 22. Banerjee, S.
    et al.
    Sarkar, S.
    Lakshman, K.
    Dutta, Joydeep
    Water Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh, Oman.
    Pal, S. K.
    UVA radiation induced ultrafast electron transfer from a food carcinogen benzo[a]pyrene to organic molecules, biological macromolecules, and inorganic nano structures2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 14, 3726-3737 p.Article in journal (Refereed)
    Abstract [en]

    Reactions involving electron transfer (ET) and reactive oxygen species (ROS) play a pivotal role in carcinogenesis and cancer biochemistry. Our present study emphasizes UVA radiation induced ET reaction as one of the key aspects of a potential carcinogen, benzo[a]pyrene (BP), in the presence of a wide variety of molecules covering organic p-benzoquinone (BQ), biological macromolecules like calf-thymus DNA (CT-DNA), human serum albumin (HSA) protein, and inorganic zinc oxide (ZnO) nanorods (NRs). Steady-state and picosecond-resolved fluorescence spectroscopy have been used to monitor such ET reactions. Physical consequences of BP association with CT-DNA have been investigated through temperature-dependent circular dichroism (CD) spectroscopy. The temperature-dependent steady-state, picosecond-resolved fluorescence lifetime and anisotropy studies reveal the effect of temperature on the perturbation of such ET reactions from BP to biological macromolecules, highlighting their temperature-dependent association. Furthermore, the electron-donating property of BP has been corroborated by measuring wavelength-dependent photocurrent in a BP-anchored ZnO NR-based photodevice, offering new physical insights for the carcinogenic study of BP.

  • 23. Barua, S
    et al.
    Dutta, Joydeep
    Sultan Qaboos University, Sultanate of Oman.
    Liquified Petroleum Gas Sensing using Microballs of ZnO2013In: lndian ]ournal of Science and Technology, ISSN 0974-6846, Vol. 6, no S3, 190-193 p.Article in journal (Refereed)
    Abstract [en]

    Liquefied petroleum gas (LPG) is extensively used in households and industries. It is a combustible gas and leakages can lead toexplosions. It is also toxic and exposure to it above a certain level can be fatal and as such real time monitoring and accidentalleakage detection is crucial. Metal oxide semiconductors are known for their gas sensing property. Spherical microstructures ofZnO, a wide band gap semiconductor, were synthesized following a simple hydrothermal route. Thin films of these microsphereswere used to detect LPG down to 1000 ppm by observing the change in electrical resistance. Platinum (Pt) nanoparticles weredeposited on the sensing mediurn as a catalyst to improve the performance of the sensors. Maximum response of 55.8% wasachieved for 5000 ppm ofLPG at 250oC.

  • 24. Baruah, S.
    et al.
    Dutta, J.
    Centre of Excellence in Nanotechnology, Asian Institute of Technology,Thailand.
    Hydrothermal growth of ZnO nanostructures2009In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 10, no 1Article in journal (Refereed)
    Abstract [en]

    One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted.

  • 25. Baruah, S.
    et al.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Effect of seeded substrates on hydrothermally grown ZnO nanorods2009In: Journal of Sol-Gel Science and Technology, ISSN 0928-0707, E-ISSN 1573-4846, Vol. 50, no 3, 456-464 p.Article in journal (Refereed)
    Abstract [en]

    We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.

  • 26. Baruah, S.
    et al.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Nanotechnology applications in pollution sensing and degradation in agriculture2009In: Environmental Chemistry Letters, ISSN 1610-3653, E-ISSN 1610-3661, Vol. 7, no 3, 191-204 p.Article in journal (Refereed)
    Abstract [en]

    With the rise in the global population, the demand for increased supply of food has motivated scientists and engineers to design new methods to boost agricultural production. With limited availability of land and water resources, growth in agriculture can be achieved only by increasing productivity through good agronomy and supporting it with an effective use of modern technology. Advanced agronomical methods lay stress not only on boosting agricultural produce through use of more effective fertilizers and pesticides, but also on the hygienic storage of agricultural produce. The detrimental effects of modern agricultural methods on the ecosystem have raised serious concerns amongst environmentalists. The widespread use of persistent pesticides globally over the last six decades has contaminated groundwater and soil, resulting in diseases and hardships in non-target species such as humans and animals. The first step in the removal of disease causing microbes from food products or harmful contaminants from soil and groundwater is the effective detection of these damaging elements. Nanotechnology offers a lot of promise in the area of pollution sensing and prevention, by exploiting novel properties of nanomaterials. Nanotechnology can augment agricultural production and boost food processing industry through applications of these unique properties. Nanosensors are capable of detecting microbes, humidity and toxic pollutants at very minute levels. Organic pesticides and industrial pollutants can be degraded into harmless and often useful components, through a process called photocatalysis using metal oxide semiconductor nanostructures. Nanotechnology is gradually moving out from the experimental into the practical regime and is making its presence felt in agriculture and the food processing industry. Here we review the contributions of nanotechnology to the sensing and degradation of pollutants for improved agricultural production with sustainable environmental protection.

  • 27. Baruah, S.
    et al.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    pH-dependent growth of zinc oxide nanorods2009In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 311, no 8, 2549-2554 p.Article in journal (Refereed)
    Abstract [en]

    Here we study the effect of pH variation on the dimension and morphology of zinc oxide (ZnO) nanorods grown through hydrothermal process at temperatures less than 100 °C. ZnO nanorods were grown on pre-seeded glass substrates using zinc nitrate hexahydrate as the source of Zn ions and hexamethylenetetramine as the source of hydroxyl ions. The pH of the reaction bath was found to change gradually from 6.4 to 7.3 in 5 h during the growth process. The growth of the ZnO nanorods was observed to be faster, both laterally and longitudinally, when the growth solution was in basic conditions. However, flower petal like ZnO nanostructures were obtained when the growth process was initiated in basic condition (pH 8–12), indicating that initial acidic conditions were required to obtain nanorods with well-defined hexagonal facets. ZnO is known to erode in acidic condition and the final dimension of the nanorods is determined by a competition between crystal growth and etching. ZnO nanorods of different dimensions, both laterally (diameters ranging from 220 nm to 1 μm) and longitudinally (lengths ranging from 1 to 5.6 μm) were successfully synthesized using the same concentration of zinc nitrate and hexamine in the reaction bath and the same growth duration of 5 h simply through appropriate control of the pH of the reactant solution between 6 and 7.3.

  • 28. Baruah, S.
    et al.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Zinc stannate nanostructures: Hydrothermal synthesis2011In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 12, no 1Article in journal (Refereed)
    Abstract [en]

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  • 29. Baruah, S.
    et al.
    Jaisai, M.
    Imani, R.
    Nazhad, M. M.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Photocatalytic paper using zinc oxide nanorods2010In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 11, no 5Article in journal (Refereed)
    Abstract [en]

    Zinc oxide (ZnO) nanorods were grown on a paper support prepared from soft wood pulp. The photocatalytic activity of a sheet of paper with ZnO nanorods embedded in its porous matrix has been studied. ZnO nanorods were firmly attached to cellulose fibers and the photocatalytic paper samples were reused several times with nominal decrease in efficiency. Photodegradation of up to 93% was observed for methylene blue in the presence of paper filled with ZnO nanorods upon irradiation with visible light at 963 Wm–2 for 120 min. Under similar conditions, photodegradation of approximately 35% was observed for methyl orange. Antibacterial tests revealed that the photocatalytic paper inhibits the growth of Escherichia coli under room lighting conditions.

  • 30. Baruah, S.
    et al.
    Pal, S. K.
    Dutta, Joydeep
    Water Research Center, Sultan Qaboos University, P. O. Box 17, Al-Khoudh123, Oman.
    Nanostructured zinc oxide for water treatment2012In: Nanoscience and Nanotechnology - Asia, ISSN 2210-6812, Vol. 2, no 2, 90-102 p.Article in journal (Refereed)
    Abstract [en]

    Environmental pollution and industrialization on a global scale have drawn attention to the vital need for developing new hygienically friendly purification technologies. Existing wastewater treatment technologies demand high capital investment and operation &amp; maintenance cost, and large area. Cost-effective treatment of pollutants requires the transformation of hazardous substances into benign forms and the subsequent development of effective risk management strategies from harmful effects of pollutants that are highly toxic, persistent, and difficult to treat. Application of nanotechnology that results in improved water treatment options might include removal of the finest contaminants from water (&lt; 300 nm) and "smart materials" or "reactive surface coatings" with engineered specificity to a certain pollutant that destroy, transform or immobilize toxic compounds. Nanomaterials have been gaining increasing interest in the area of environmental remediation mainly due to their enhanced surface and also other specific changes in their physical, chemical and biological properties that develop due to size effects. Heterogeneous photocatalytic systems via metal oxide semiconductors like TiO2 and ZnO, are capable of operating effectively and efficiently for waste water treatment which has been discussed along with other nanotechnology routes that can be useful for water treatments. Multifunctional photocatalytic membranes using ZnO nanostructures are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. A short discussion on the study of charge transfer mechanisms during photocatalytic reactions has also been included.

  • 31. Baruah, S.
    et al.
    Rafique, R. F.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Visible light photocatalysis by tailoring crystal defections in zinc oxide nanostructures2008In: Nano, ISSN 1793-2920, Vol. 3, no 5, 399-407 p.Article in journal (Refereed)
    Abstract [en]

    The photocatalytic activity of zinc oxide (ZnO) nanoparticles, films and nanowires as a potential visible light photocatalyst is presented in this work. ZnO nanoparticles were synthesized in different alcoholic solvents. Crystal defects were introduced either by doping the crystallites with manganese or by fast crystallization (using microwave irradiation during synthesis). ZnO, with a band gap of 3.37 eV, normally absorbs electromagnetic waves in the ultraviolet region, but introducing defects into its crystal lattice can shift the absorption more toward the visible light band from 400 nm to 700 nm by creating intermediate states which inhibit electron-hole recombination. The undoped ZnO nanoparticles synthesized using microwaves showed comparable photocatalytic activities to the doped samples using the conventional heating method. To increase the effective surface area of the photocatalyst, ZnO nanowires were grown by a solution-based technique. Methylene blue degradation was observed to be enhanced in the presence of the ZnO nanowires compared to the ZnO nanoparticles. Intentional defect creation in photocatalysts could be an attractive possibility to apply in the visible light photocatalytic degradation studies.

  • 32. Baruah, S.
    et al.
    Sinha, S. S.
    Ghosh, B.
    Pal, S. K.
    Raychaudhuri, A. K.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technolo, Thailand.
    Photoreactivity of ZnO nanoparticles in visible light: Effect of surface states on electron transfer reaction2009In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 105, no 7Article in journal (Refereed)
    Abstract [en]

    Wide band gap metal oxide semiconductors such as zinc oxide (ZnO) show visible band photolysis that has been employed, among others, to degrade harmful organic contaminants into harmless mineral acids. Metal oxides show enhanced photocatalytic activity with the increase in electronic defects in the crystallites. By introducing defects into the crystal lattice of ZnO nanoparticles, we observe a redshift in the optical absorption shifting from the ultraviolet region to the visible region (400-700 nm), which is due to the creation of intermediate defect states that inhibit the electron hole recombination process. The defects were introduced by fast nucleation and growth of the nanoparticles by rapid heating using microwave irradiation and subsequent quenching during the precipitation reaction. To elucidate the nature of the photodegradation process, picosecond resolved time correlated single photon count (TCSPC) spectroscopy was carried out to record the electronic transitions resulting from the de-excitation of the electrons to their stable states. Photodegradation and TCSPC studies showed that defect engineered ZnO nanoparticles obtained through fast crystallization during growth lead to a faster initial degradation rate of methylene blue as compared to the conventionally synthesized nanoparticles.

  • 33. Baruah, S.
    et al.
    Thanachayanont, C.
    Dutta, Joydeep
    Asian Institute of Technology, School of Engineering and Technology, Thailand.
    Growth of ZnO nanowires on nonwoven polyethylene fibers2008In: Science and Technology of Advanced Materials, ISSN 1468-6996, E-ISSN 1878-5514, Vol. 9, no 2Article in journal (Refereed)
    Abstract [en]

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95°C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  • 34. Baruah, S.
    et al.
    Warad, H. C.
    Chindaduang, A.
    Tumcharern, G.
    Dutta, Joydeep
    Asian Institute of Technology, School of Engineering and Technology, Thailand.
    Studies on chitosan stabilised ZnS:Mn2+ nanoparticles2008In: Journal of Bionanoscience, ISSN 1557-7910, Vol. 2, no 1, 42-48 p.Article in journal (Refereed)
    Abstract [en]

    We report a unique synthesis of zinc sulphide nanoparticles doped with manganese using a biocompatible passivating agent 'chitosan,' that shows efficient luminescence peaking at 590 nm. This high luminescence efficiency of the synthesized nanoparticles makes them ideal for quantum dot based bio-labelling applications. The synthesis is carried out by precipitation reaction in aqueous media of zinc acetate and sodium sulphide where manganese acetate is added as the dopant. The obtained nanoparticles were around 4 to 6 nm in size and were found to be stable for months of shelf life. The photoluminescence intensity did not degrade even when the colloid was heated up to 65 °C for prolonged periods, while it reduced slightly at higher temperatures. The photoluminescence of the nanoparticles did not reduce appreciably even after long irradiation under UV light.

  • 35. Baruah, Sunandan
    et al.
    Dutta, Joydeep
    Asian Institute of Technology (AIT), Bangkok, Thailand.
    Hornyak, Gabor L
    Poor Man’s Nanotechnology—-From the Bottom Up (Thailand)2011In: Nanotechnology and Global Sustainability, CRC Press , 2011, Vol. 7Chapter in book (Other academic)
  • 36. Baruah, Sunandan
    et al.
    Jaisai, Mayuree
    Dutta, Joydeep
    Asian Institute of Technology, Thailand.
    Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods2012In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 2, no 5, 918-921 p.Article in journal (Refereed)
    Abstract [en]

    A ZnO nanorods based water purification unit was designed which operates with solar energy as the source of activation. The purifier was tested on two model bacteria Escherichia coli and Staphylococcus aureus with concentration as high as 1010 colony forming units (CFU) per litre, which is about 105 times higher than the bacterial concentration in tap water. Up to 99% (0.99 × 1010 CFU L−1) removal of viable bacterial cells was achieved under sunlight activation.

  • 37. Baruah, Sunandan
    et al.
    Khan, Mohammed Najam
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Perspectives and applications of nanotechnology in water treatment2016In: Environmental Chemistry Letters, ISSN 1610-3653, E-ISSN 1610-3661, Vol. 14, no 1, 1-14 p.Article, review/survey (Refereed)
    Abstract [en]

    Industrialization and excessive use of pesticides for boosting agricultural production have adversely affected the ecosystem, polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods, however, generate by-products that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful by-products are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented, highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.

  • 38. Baruah, Sunandan
    et al.
    Khan, Muhammad Najam
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nanotechnology in Water Treatment2015In: Pollutants in Buildings, Water and Living Organisms, Springer International Publishing , 2015, 51-84 p.Chapter in book (Other academic)
    Abstract [en]

    Industrialization and excessive use of pesticides for boosting agricultural production has adversely affected the ecosystem, thus polluting natural water reserves. Remediation of contaminated water has been an area of concern with numerous techniques being applied to improve the quality of naturally available water to the level suitable for human consumption. Most of these methods however generate byproducts that are sometimes toxic. Heterogenous photocatalysis using metal oxide nanostructures for water purification is an attractive option because no harmful byproducts are created. A discussion on possible methods to engineer metal oxides for visible light photocatalysis is included to highlight the use of solar energy for water purification. Multifunctional photocatalytic membranes are considered advantageous over freely suspended nanoparticles due to the ease of its removal from the purified water. An overview of water remediation techniques is presented highlighting innovations through nanotechnology for possible addressing of problems associated with current techniques.

  • 39. Baruah, Sunandan
    et al.
    Mahmood, M. A.
    Myint, M. T. Z.
    Bora, T.
    Dutta, Joydeep
    School of Advanced Technologies, Asian Institute of Technology, Thailand.
    Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods2010In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 1, no 1, 14-20 p.Article in journal (Refereed)
    Abstract [en]

    Hydrothermally grown ZnO nanorods have inherent crystalline defects primarily due to oxygen vacancies that enhance optical absorption in the visible spectrum, opening up possibilities for visible light photocatalysis. Comparison of photocatalytic activity of ZnO nanorods and nanoparticle films on a test contaminant methylene blue with visible light irradiation at 72 kilolux (klx) showed that ZnO nanorods are 12–24% more active than ZnO nanoparticulate films. This can be directly attributed to the increased effective surface area for adsorption of target contaminant molecules. Defects, in the form of interstitials and vacancies, were intentionally created by faster growth of the nanorods by microwave activation. Visible light photocatalytic activity was observed to improve by ≈8% attributed to the availability of more electron deficient sites on the nanorod surfaces. Engineered defect creation in nanostructured photocatalysts could be an attractive solution for visible light photocatalysis.

  • 40. Baruah, Sunandan
    et al.
    Ortinero, C.
    Shipin, O. V.
    Dutta, Joydeep
    Asian Inst Technol, Ctr Excellence Nanotechnol, Thailand.
    Manganese doped zinc sulfide quantum dots for detection of Escherichia coli2012In: Journal of Fluorescence, ISSN 1053-0509, E-ISSN 1573-4994, Vol. 22, no 1, 403-408 p.Article in journal (Refereed)
    Abstract [en]

    A novel biocompatible chitosan passivated manganese doped zinc sulfide (Mn doped ZnS) nanophosphor has been synthesized through a simple aqueous precipitation reaction. Upon excitation with ultraviolet light, the quantum dots (QDs) emit an orange luminescence peaking at 590 nm, which is visible to the naked eye. These chitosan coated Mn doped ZnS QDs can have potential applications in bio-labeling, particularly in fluorescence-based imaging. One of the envisioned applications of these QDs is in improving the conventional, organic dye-reliant Fluorescence in situ Hybridization (FISH) technique, a widely used method for microbial detection. Here we demonstrate that the chitosan-capped Mn doped ZnS QDs are suitable for this purpose.

  • 41. Bin Abdul Rahim, H. R.
    et al.
    Bin Lokman, M. Q.
    Harun, S. W.
    Hornyak, G. L.
    Sterckx, K.
    Mohammed, W. S.
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing2016In: Journal of Nanophotonics, ISSN 1934-2608, Vol. 10, no 3, 036009Article in journal (Refereed)
    Abstract [en]

    The width of spiral-patterned zinc oxide (ZnO) nanorod coatings on plastic optical fiber (POF) was optimized theoretically for light-side coupling and found to be 5 mm. Structured ZnO nanorods were grown on large core POFs for the purpose of alcohol vapor sensing. The aim of the spiral patterns was to enhance signal transmission by reduction of the effective ZnO growth area, thereby minimizing light leakage due to backscattering. The sensing mechanism utilized changes in the output signal due to adsorption of methanol, ethanol, and isopropanol vapors. Three spectral bands consisting of red (620 to 750 nm), green (495 to 570 nm), and blue (450 to 495 nm) were applied in measurements. The range of relative intensity modulation (RIM) was determined to be for concentrations between 25 to 300 ppm. Methanol presented the strongest response compared to ethanol and isopropanol in all three spectral channels. With regard to alcohol detection RIM by spectral band, the green channel demonstrated the highest RIM values followed by the blue and red channels, respectively.

  • 42. Boonyanitipong, Prapatsorn
    et al.
    Kositsup, Boonthida
    Kumar, Prabhat
    Baruah, Sunandan
    Dutta, Joydeep
    Asian Institute of Technology (AIT), Bangkok, Thailand.
    Toxicity of ZnO and TiO2 Nanoparticles on Germinating Rice Seed2011In: International Journal of Bioscience, Biochemistry and Bioinformatics, ISSN 2010-3638, Vol. 1, 282-285 p.Article in journal (Refereed)
    Abstract [en]

    The present study is aimed at investigating the effects of zinc oxide nanoparticles (nano-ZnO) and titanium dioxide nanoparticles (nano-TiO2) on rice (Oryza sativa L.) roots. Three parameters are examined in this study: seed germination percentage, root length, and number of roots. The results show that there is no reduction in the percent seed germination from both nanoparticles, however nano-ZnO is observed to have detrimental effects on rice roots at early seedling stage. Nano-ZnO is found to stunt roots length and reduce number of roots. Whereas nano-TiO2 has no effect on root length. This study shows that direct exposure to specific types of nanoparticles causes significant phytotoxicity, emphasizes the need for ecologically responsible disposal of wastes containing nanoparticles and also highlights the necessity for further study on the impacts of nanoparticles on agricultural and environmental systems.

  • 43. Bora, T.
    et al.
    Al-Hinai, M. H.
    Al-Hinai, A. T.
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In-Situ Temperature-Dependent Raman Spectroscopy2015In: Journal of The American Ceramic Society, ISSN 0002-7820, E-ISSN 1551-2916Article in journal (Refereed)
    Abstract [en]

    Temperature-dependent in-situ Raman spectroscopy is used to investigate the phase transformation of zinc metastannate (ZnSnO<inf>3</inf>) to zinc orthostannate (Zn<inf>2</inf>SnO<inf>4</inf>) induced upon annealing in the ambient. ZnSnO<inf>3</inf> microcubes (MCs) were synthesized at room temperature using a simple aqueous synthesis process, followed by characterization using electron microscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). Annealing of the ZnSnO<inf>3</inf> MCs was carried out up to 1000°C, while recording the Raman spectra in-situ at regular intervals. Phase transformation from metastannate to orthostannate was found to begin around 500°C with an activation energy of ~0.965 eV followed by the recrystallization into the inverse spinel orthostannate phase at ~750°C. Results from this study provide detailed understanding of the phase transformation behavior of perovskite ZnSnO<inf>3</inf> to inverse spinel Zn<inf>2</inf>SnO<inf>4</inf> upon thermal annealing.

  • 44. Bora, T.
    et al.
    Kyaw, H. H.
    Dutta, Joydeep
    Water Research Center, Sultan Qaboos University.
    Plasmon resonance enhanced zinc oxide photoelectrodes for improvement in performance of dye sensitized solar cells2014In: Materials Science Forum, ISSN 0255-5476, E-ISSN 1662-9752, Vol. 771, 91-101 p.Article in journal (Refereed)
    Abstract [en]

    Nanocomposites of vertically aligned zinc oxide (ZnO) nanorod arrays incorporated with gold (Au) nanoparticles have been used as photoelectrodes to fabricate dye sensitized solar cells (DSSCs). Due to the surface plasmon resonance of the Au nanoparticles, the nanocomposite photoelectrodes demonstrate enhancement in the visible light absorption resulting in ~8% higher photocurrent compared to ZnO photoelectrode based DSSCs fabricated without any Au nanoparticles. In addition to the higher optical absorption due to the gold nanoparticles, a Schottky barrier forms at the ZnO/Au interface preventing the back electron transfer from the conduction band of the semiconductor nanorods to the redox electrolyte providing improvement in the charge separation at the nanocomposite photoelectrode. Upon incorporation of Au nanoparticles, the overall efficiency of the DSSC increased from 2. 41% to 3. 27%. The role of Au nanoparticles on the performance of the DSSCs for varying concentration of the Au nanoparticles as well as the post-growth annealing treatment of the nanocomposite photoelectrode is reported.

  • 45. Bora, T.
    et al.
    Kyaw, H. H.
    Sarkar, S.
    Pal, S. K.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process2011In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 2, no 1, 681-690 p.Article in journal (Refereed)
    Abstract [en]

    Zinc oxide (ZnO) nanorods decorated with gold (Au) nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC). The picosecond-resolved, time-correlated single-photon-count (TCSPC) spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE) of 6.49% for small-area (0.1 cm(2)) ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm(2)), similar to 130% enhancement in PCE (from 0.50% to 1.16%) was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  • 46. Bora, Tanujjal
    et al.
    Dutta, Joydeep
    Water Research Center, Nanotechnology, Sultan Qaboos University, Oman.
    Applications of nanotechnology in wastewater treatment-A review2014In: Journal of Nanoscience and Nanotechnology, ISSN 1533-4880, E-ISSN 1533-4899, Vol. 14, no 1, 613-626 p.Article in journal (Refereed)
    Abstract [en]

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  • 47. Bora, Tanujjal
    et al.
    Fallah, H.
    Chaudhari, M.
    Apiwattanadej, T.
    Harun, S. W.
    Mohammed, W. S.
    Dutta, Joydeep
    Center of Excellence in Nanotechnology, Asian Institute of Technology, Thailand.
    Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing2014In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 202, 543-550 p.Article in journal (Refereed)
    Abstract [en]

    Controlled light coupling from surrounding to the cladding mode of zinc oxide (ZnO) nanorod coated multimode optical fiber induced by the light scattering properties of the nanorod coating and their applications of sensing are reported here. A dense and highly ordered array of ZnO nanorods is grown on the cladding of silica fibers by using low temperature hydrothermal process and the effect of the hydrothermal growth conditions of the nanorods on the light scattering and coupling to the optical fibers is experimentally investigated. The nanorod length and its number per unit area are found to be most crucial parameters for the optimum side coupling of light into the fibers. Maximum excitation of the cladding mode by side coupling of light is obtained with ZnO nanorods of length similar to 2.2 mu m, demonstrating average coupling efficiency of similar to 2.65%. Upon exposure to different concentrations of various chemical vapors, the nanorod coated fibers demonstrated significant enhancement in the side coupled light intensity, indicating the potential use of these ZnO nanorod coated fibers as simple, low cost and efficient optical sensors. The sensor responses to methanol, ethanol, toluene and benzene vapor were investigated and compared, while the effect of humidity in the sensing environment on the sensor performance was explored as well.

  • 48. Bora, Tanujjal
    et al.
    Kyaw, Htet H
    Dutta, Joydeep
    Center of Excellence in Nanotechnology, Asian Institute of Technology, Thailand.
    Zinc oxide–zinc stannate core–shell nanorod arrays for CdS quantum dot sensitized solar cells2012In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 68, 141-145 p.Article in journal (Refereed)
    Abstract [en]

    Nanorod arrays of zinc oxide–zinc stannate core–shell photoelectrodes were prepared by a simple hydrothermal process and cadmium sulfide (CdS) quantum dot sensitized solar cells were fabricated. The photocurrent density of the core–shell photoelectrode was found to improve by ∼2.4 times compared to ZnO nanorod photoelectrodes, due to improved surface area and charge transport in the core–shell photoelectrodes. With a thin layer of ZnS on the CdS quantum dot surface, the core–shell quantum dot sensitized solar cell demonstrated maximum power conversion efficiency of 1.24% under 1 sun illumination (AM1.5).

  • 49. Bora, Tanujjal
    et al.
    Lakshman, Karthik K
    Sarkar, Soumik
    Makhal, Abhinandan
    Sardar, S.
    Pal, S. K.
    Dutta, Joydeep
    School of Engineering and Technology, Asian Institute of Technology, Thailand.
    Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin2013In: Beilstein Journal of Nanotechnology, ISSN 2190-4286, Vol. 4, no 1, 714-725 p.Article in journal (Refereed)
    Abstract [en]

    In recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR) through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired. The photocatalytic degradation of BR activated by ZnO nanoparticles through a non-radiative energy transfer pathway can be influenced by the surface defect-states (mainly the oxygen vacancies) of the catalyst nanoparticles. These were modulated by applying a simple annealing in an oxygen-rich atmosphere. The mechanism of the energy transfer process between the ZnO nanoparticles and the BR molecules adsorbed at the surface was studied by using steady-state and picosecond-resolved fluorescence spectroscopy. A correlation of photocatalytic degradation and time-correlated single photon counting studies revealed that the defect-engineered ZnO nanoparticles that were obtained through post-annealing treatments led to an efficient decomposition of BR molecules that was enabled by Forster resonance energy transfer.

  • 50. Bora, Tanujjal
    et al.
    Myint, M T Z
    Al-Harthi, Salim
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Department in Nanotechnology, Water Research Center, Sultan Qaboos University, P. O. Box 17, Al Khoud, Oman.
    Role of surface defects on visible light enabled plasmonic photocatalysis in Au–ZnO nanocatalysts2015In: RSC Advances, ISSN 2046-2069, Vol. 5, no 117, 96670-96680 p.Article in journal (Refereed)
    Abstract [en]

    Visible light photocatalytic activity of the plasmonic gold-zinc oxide (Au-ZnO) nanorods (NRs) is investigated with respect to the surface defects of the ZnO NRs, controlled by annealing the NRs in ambient at different temperatures. Understanding the role of surface defects on the charge transfer behaviour across a metal-semiconductor junction is vital for efficient visible light active photocatalysis. Au nanoparticles (NPs) are in situ deposited on the surface of the ZnO NRs having different surface defect densities, demonstrating efficient harvesting of visible light due to the surface plasmon absorption. The surface defects in the ZnO NRs are probed by using photoluminescence (PL) spectroscopy, X-ray photoemission spectroscopy (XPS), and photo-electro-chemical current-voltage measurements to study the photo-generated charge transfer efficiency across the Au-ZnO Schottky interface. The results show that the surface situated oxygen vacancy sites in the ZnO NRs significantly reduce the charge transfer efficiency across the Au-ZnO Schottky interfaces lowering the photocatalytic activity of the system. Reduction in the oxygen vacancy sites through annealing the ZnO NRs resulted in the enhancement of visible light enabled photocatalytic activity of the Au-ZnO plasmonic nanocatalyst, adding vital insight towards the design of efficient plasmonic photocatalysts.

1234 1 - 50 of 185
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf