Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO).
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    Antibodypedia - The wiki of antibodies2015In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 26Article in journal (Other academic)
  • 2.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    ANTIBODYPEDIA: THE WIKI OF ANTIBODIES2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 3.
    Alm, Tove
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    A Chromosome-Centric Analysis of Antibodies Directed toward the Human Proteome Using Antibodypedia2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 3, p. 1669-1676Article in journal (Refereed)
    Abstract [en]

    Antibodies are crucial for the study of human proteins and have been defined as one of the three pillars in the human chromosome-centric Human Proteome Project (CHPP). In this article the chromosome-centric structure has been used to analyze the availability of antibodies as judged by the presence within the portal Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies toward human protein targets. This public database displays antibody data from more than one million antibodies toward human protein targets. A summary of the content in this knowledge resource reveals that there exist more than 10 antibodies to over 70% of all the putative human genes, evenly distributed over the 24 human chromosomes. The analysis also shows that at present, less than 10% of the putative human protein-coding genes (n = 1882) predicted from the genome sequence lack antibodies, suggesting that focused efforts from the antibody-based and mass spectrometry-based proteomic communities should be encouraged to pursue the analysis of these missing proteins. We show that Antibodypedia may be used to track the development of available and validated antibodies to the individual chromosomes, and thus the database is an attractive tool to identify proteins with no or few antibodies yet generated.

  • 4.
    Berglund, Lisa
    et al.
    KTH, School of Biotechnology (BIO).
    Björling, Erik
    KTH, School of Biotechnology (BIO).
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO).
    Rockberg, Johan
    KTH, School of Biotechnology (BIO).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO).
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO).
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    A whole-genome bioinformatics approach to selection of antigens for systematic antibody generation2008In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 8, no 14, p. 2832-2839Article in journal (Refereed)
    Abstract [en]

    Here, we present an antigen selection strategy based on a whole-genome bioinformatics approach, which is facilitated by an interactive visualization tool displaying protein features from both public resources and in-house generated data. The web-based bioinformatics platform has been designed for selection of multiple, non-overlapping recombinant protein epitope signature tags by display of predicted information relevant for antigens, including domain- and epitope sized sequence similarities to other proteins, transmembrane regions and signal peptides. The visualization tool also displays shared and exclusive protein regions for genes with multiple splice variants. A genome-wide analysis demonstrates that antigens for approximately 80% of the human protein-coding genes can be selected with this strategy.

  • 5.
    Edfors, Fredrik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Andreas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Linderbäck, Klas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Maddalo, Gianluca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Azimi, Alireza
    Karolinska Inst, Karolinska Univ Hosp, Dept Oncol Pathol, SE-17177 Stockholm, Sweden..
    Sivertsson, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, Cecilia
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Biosustainabil, DK-2970 Horsholm, Denmark..
    Enhanced validation of antibodies for research applications2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 4130Article in journal (Refereed)
    Abstract [en]

    There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.

  • 6.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Djureinovic, D.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Habuka, Masato
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tahmasebpoor, S.
    Danielsson, A.
    Edlund, K.
    Asplund, A.
    Sjöstedt, E.
    Lundberg, E.
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, J.
    Berling, H.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, A.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, I.
    Navani, S.
    Huss, Mikael
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics2014In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 13, no 2, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  • 7.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics.
    von Heijne, Gunnar
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Berglund, Lisa
    KTH, School of Biotechnology (BIO), Proteomics.
    Prediction of the human membrane proteome2010In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 10, no 6, p. 1141-1149Article in journal (Refereed)
    Abstract [en]

    Membrane proteins are key molecules in the cell, and are important targets for pharmaceutical drugs. Few three-dimensional structures of membrane proteins have been obtained, which makes computational prediction of membrane proteins crucial for studies of these key molecules. Here, seven membrane protein topology prediction methods based on different underlying algorithms, such as hidden Markov models, neural networks and support vector machines, have been used for analysis of the protein sequences from the 21 416 annotated genes in the human genome. The number of genes coding for a protein with predicted cc-helical transmembrane region(s) ranged from 5508 to 7651, depending on the method used. Based on a majority decision method, we estimate 5539 human genes to code for membrane proteins, corresponding to approximately 26% of the human protein-coding genes. The largest fraction of these proteins has only one predicted transmembrane region, but there are also many proteins with seven predicted transmembrane regions, including the G-protein coupled receptors. A visualization tool displaying the topologies suggested by the eight prediction methods, for all predicted membrane proteins, is available on the public Human Protein Atlas portal (www.proteinatlas.org).

  • 8.
    Fagerberg, Linn
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Älgenäs, C.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Klevebring, Daniel
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Asplund, A.
    Sjöstedt, E.
    Al-Khalili Szigyarto, C.
    Edqvist, P. -H
    Olsson, I.
    Rydberg, U.
    Hudson, P.
    Ottosson Takanen, J.
    Berling, H.
    Björling, Lisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rockberg, J.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, S.
    Jirström, K.
    Mulder, J.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Contribution of antibody-based protein profiling to the human chromosome-centric proteome project (C-HPP)2013In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 12, no 6, p. 2439-2448Article in journal (Refereed)
    Abstract [en]

    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org).

  • 9.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Sandler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Wiking, Mikaela
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åbergh, Annica
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mapping the subcellular protein distribution in three human cell lines2011In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 10, no 8, p. 3766-3777Article in journal (Refereed)
    Abstract [en]

    The subcellular locations of proteins are closely related to their function and constitute an essential aspect for understanding the complex machinery of living cells. A systematic effort has been initiated to map the protein distribution in three functionally different cell lines with the aim to provide a subcellular localization index for at least one representative protein from all human protein-encoding genes. Here, we present the results of over 4,000 proteins mapped to 16 subcellular compartments. The results indicate a ubiquitous protein expression with a majority of the proteins found in all three cell lines and a large portion localized to two or more compartments. The inter-relationships between the subcellular compartments are visualized in a protein-compartment network based on all detected proteins. Hierarchical clustering was performed to determine how closely related the organelles are in terms of protein constituents and compare the proteins detected in each cell type. Our results show distinct organelle proteomes, well conserved across the cell types, and demonstrate that biochemically similar organelles are grouped together.

  • 10.
    Jonasson, Kalle
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Berglund, Lisa
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    The 6th HUPO Antibody Initiative (HAI) workshop: Sharing data about affinity reagents and other recent developments2010In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 10, no 11, p. 2066-2068Article in journal (Refereed)
    Abstract [en]

    The Human Antibody Initiative (HAI) aims to promote and facilitate the use of antibodies for proteomics research. The 6th workshop for the HUPO Antibody Initiative (HAI) held in September 2009 was co-chaired by Michael Snyder and Mathias Uhlen and discussed several aspects of antibody production, their validation, and attempts to standardise this process, in particular, when subsequently described in the literature. An update on the progress of the Human Protein Atlas was also presented to the attendees.

  • 11. Mulder, J.
    et al.
    Björling, Erik
    KTH, School of Biotechnology (BIO), Proteomics.
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics.
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Hokfelt, T.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Tissue Profiling of the Mammalian Central Nervous System Using Human Antibody-based Proteomics2009In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 8, no 7, p. 1612-1622Article in journal (Refereed)
    Abstract [en]

    A need exists for mapping the protein profiles in the human brain both during normal and disease conditions. Here we studied 800 antibodies generated toward human proteins as part of a Human Protein Atlas program and investigated their suitability for detailed analysis of various levels of a rat brain using immuno-based methods. In this way, the parallel, rather limited analysis of the human brain, restricted to four brain areas (cerebellum, cerebral cortex, hippocampus, and lateral subventricular zone), could be extended in the rat model to 25 selected areas of the brain. Approximately 100 antibodies (12%) revealed a distinct staining pattern and passed validation of specificity using Western blot analysis. These antibodies were applied to coronal sections of the rat brain at 0.7-mm intervals covering the entire brain. We have now produced detailed protein distribution profiles for these antibodies and acquired over 640 images that form the basis of a publicly available portal of an antibody-based Rodent Brain Protein Atlas database (www.proteinatlas.org/rodentbrain). Because of the systematic selection of target genes, the majority of antibodies included in this database are generated against proteins that have not been studied in the brain before. Furthermore optimized tissue processing and colchicine treatment allow a high quality, more extended annotation and detailed analysis of subcellular distributions and protein dynamics. Molecular & Cellular Proteomics 8: 1612-1622, 2009.

  • 12.
    Stadler, Charlotte
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Neumann, Beate
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Pepperkok, Rainer
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy2012In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 75, no 7, p. 2236-2251Article in journal (Refereed)
    Abstract [en]

    We have developed a platform for validation of antibody binding and protein subcellular localization data obtained from immunofluorescence using siRNA technology combined with automated confocal microscopy and image analysis. By combining the siRNA technology with automated sample preparation, automated imaging and quantitative image analysis, a high-throughput assay has been set-up to enable confirmation of accurate protein binding and localization in a systematic manner. Here, we describe the analysis and validation of the subcellular location of 65 human proteins, targeted by 75 antibodies and silenced by 130 siRNAs. A large fraction of (80%) the subcellular locations, including locations of several previously uncharacterized proteins, could be confirmed by the significant down-regulation of the antibody signal after the siRNA silencing. A quantitative analysis was set-up using automated image analysis to facilitate studies of targets found in more than one compartment. The results obtained using the platform demonstrate that siRNA silencing in combination with quantitative image analysis of antibody signals in different compartments of the cells is an attractive approach for ensuring accurate protein localization as well as antibody binding using immunofluorescence. With a large fraction of the human proteome still unexplored, we suggest this approach to be of great importance under the continued work of mapping the human proteome on a subcellular level.

  • 13.
    Thul, Peter J.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Geladaki, A.
    Ait Blal, Hammou
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, A.
    Björk, Lars
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Breckels, L. M.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gatto, L.
    Gnann, Christian
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Sunjae
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Mulder, J.
    Mulvey, C. M.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöstedt, E.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Winsnes, Casper F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lilley, K. S.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    A subcellular map of the human proteome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 356, no 6340, article id 820Article in journal (Refereed)
    Abstract [en]

    Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.

  • 14.
    Uhlén, Mathias
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fagerberg, Linn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lindskog, Cecilia
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, Caroline
    Sjöstedt, Evelina
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    Olsson, IngMarie
    Edlund, Karolina
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, Sanjay
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Djureinovic, Dijana
    Takanen, Jenny Ottosson
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Alm, Tove
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Berling, Holger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, Jan
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamsten, Marica
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Persson, Lukas
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Heijne, Gunnar
    Nielsen, Jens
    Pontén, Fredrik
    Tissue-based map of the human proteome2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 347, no 6220, p. 1260419-Article in journal (Refereed)
    Abstract [en]

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

  • 15.
    Uhlén, Mathias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Tech Univ Denmark, Ctr Biosustainabil, Lyngby, Denmark.;Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Karlsson, Max J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Andreas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svensson, Anne-Sophie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Scheffel, Julia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Kotol, David
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhong, Wen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tebani, Abdellah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Strandberg, Linnea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA..
    Sjöstedt, Evelina
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Mulder, Jan
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Mardinoglu, Adil
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Berling, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Ekblad, Siri
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Dannemeyer, Melanie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Kanje, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Rockberg, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Lundqvist, Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Malm, Magdalena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Volk, Anna-Luisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Nilsson, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Månberg, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dodig-Crnkovic, Tea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pin, Elisa
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    Zwahlen, Martin
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    Oksvold, Per
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häussler, Ragna S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, Cecilia
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Pontén, Fredrik
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Katona, Borbala
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Vuu, Jimmy
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Lindström, Emil
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Nielsen, Jens
    Chalmers Univ Technol, Dept Chem & Biol Engn, Gothenburg, Sweden..
    Robinson, Jonathan
    Chalmers Univ Technol, Dept Chem & Biol Engn, Gothenburg, Sweden..
    Ayoglu, Burcu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thul, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bergström, Göran
    Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med, Gothenburg, Sweden.;Sahlgrens Univ Hosp, Dept Clin Physiol, Gothenburg, Region Vastra G, Sweden..
    Gummesson, Anders
    Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med, Gothenburg, Sweden..
    Voldborg, Bjorn G.
    Tech Univ Denmark, Ctr Biosustainabil, Lyngby, Denmark..
    Tegel, Hanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH Royal Inst Technol, Albanova Univ Ctr, Dept Prot Sci, Stockholm, Sweden..
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    The human secretome2019In: Science Signaling, ISSN 1945-0877, E-ISSN 1937-9145, Vol. 12, no 609, article id eaaz0274Article in journal (Refereed)
    Abstract [en]

    The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.

  • 16.
    Uhlén, Mathias
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Karlsson, Max
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhong, Wen
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Abdellah, Tebani
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pou, Christian
    Karolinska Inst, Dept Womens & Childrens Hlth, Sci Life Lab, Stockholm, Sweden..
    Mikes, Jaromir
    Karolinska Inst, Dept Womens & Childrens Hlth, Sci Life Lab, Stockholm, Sweden..
    Lakshmikanth, Tadepally
    Karolinska Inst, Dept Womens & Childrens Hlth, Sci Life Lab, Stockholm, Sweden..
    Forsström, Björn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
    Mulder, Jan
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Sjostedt, Evelina
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Hober, Andreas
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Uppsala Univ, Dept Immunol Genet & Pathol, Rudbeck Lab, Uppsala, Sweden..
    Lindskog, Cecilia
    Uppsala Univ, Dept Immunol Genet & Pathol, Rudbeck Lab, Uppsala, Sweden..
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brodin, Petter
    Karolinska Inst, Dept Womens & Childrens Hlth, Sci Life Lab, Stockholm, Sweden.;Karolinska Univ Hosp, Unit Pediat Rheumatol, Stockholm, Sweden..
    A genome-wide transcriptomic analysis of protein-coding genes in human blood cells2019In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 366, no 6472, p. 1471-+, article id eaax9198Article in journal (Refereed)
    Abstract [en]

    Blood is the predominant source for molecular analyses in humans, both in clinical and research settings. It is the target for many therapeutic strategies, emphasizing the need for comprehensive molecular maps of the cells constituting human blood. In this study, we performed a genome-wide transcriptomic analysis of protein-coding genes in sorted blood immune cell populations to characterize the expression levels of each individual gene across the blood cell types. All data are presented in an interactive, open-access Blood Atlas as part of the Human Protein Atlas and are integrated with expression profiles across all major tissues to provide spatial classification of all protein-coding genes. This allows for a genome-wide exploration of the expression profiles across human immune cell populations and all major human tissues and organs.

  • 17.
    Uhlén, Mathias
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Jonasson, Kalle
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Kampf, Caroline
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Wester, Kenneth
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Wernérus, Henrik
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Björling, Lisa
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Pontén, Fredrik
    Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol.
    Towards a knowledge-based Human Protein Atlas2010In: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 28, no 12, p. 1248-1250Article in journal (Refereed)
  • 18.
    Uhlén, Mathias
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. Center for Biosustainability, Danish Technical University, Copenhagen, Denmark..
    Zhang, Cheng
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Sunjae
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöstedt, Evelina
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden..
    Fagerberg, Linn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bidkhori, Gholamreza
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Benfeitas, Rui
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Arif, Muhammad
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Liu, Zhengtao
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sanli, Kemal
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO).
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mattsson, Johanna
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brunnstrom, Hans
    Glimelius, Bengt
    Sjoblom, Tobias
    Edqvist, Per-Henrik
    Djureinovic, Dijana
    Micke, Patrick
    Lindskog, Cecilia
    Mardinoglu, Adil
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ponten, Fredrik
    A pathology atlas of the human cancer transcriptome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 357, no 6352, p. 660-+Article in journal (Refereed)
    Abstract [en]

    Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf