Endre søk
Begrens søket
1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Asem, Heba
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Biodistribution of Busulphan Loaded Biodegradable Nano-carrier Designed for Multimodal ImagingManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Multifunctional nanocarriers for pathological site imaging and regulated drug delivery are increasingly promising for disease diagnosis and treatment. We developed a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as an antineoplastic agent were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) nanoparticles (NPs) via the emulsion-evaporation method. Busulphan entrapment efficiency was 83% and the drug release showed a sustained pattern over 10 hours. SPION loaded-PEG-PCL NPs showed contrast enhancement in T2*-weighted MRI with high r2* relaxivity. In vitro time-dependent cellular PEG-PCL NP uptake was observed in macrophage cells (J774A). PEG-PCL NPs were further functionalized with VivoTag 680XL Fluorochrome for in vivo fluorescence imaging for study of their biodistribution in Balb/c mice over 48 h. The results of real-time imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL NPs were highly distributed in the lungs until 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h. No pathological impairment was found in the studied tissues. Thus, PEG-PCL NPs as biodegradable and biocompatible nanocarriers are an efficient multimodal imaging agent, offer high drug loading capacity, and provide the possibility of disease treatment.

  • 2.
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Design of Functional Polymeric Nanoparticles for Biomedical Applications2020Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Most of the devastating diseases such as cancer are relatively incurable and have high risks of relapse. Therefore, persistent endeavors have been devoted to improve patient survival rate and quality of life. Drug delivery systems (DDS) based on polymeric nanoparticles (PNPs) have been demonstrated to increase the therapeutic index (efficacy/toxicity ratio) of chemotherapeutic agents. This thesis focuses on designing non-toxic and multifunctional biodegradable PNPs from preformed polymers for bioimaging and drug delivery applications. Multifunctional poly(lactide-co-glycolide) (PLGA) NPs were simultaneously loaded with imaging probes, superparamagnetic iron oxide nanoparticles (SPION) and manganese-doped zinc sulfide (Mn:ZnS) quantum dots (QDs), as well as an anti-cancer drug, busulfan (Bu), during the particle formation. The NPs were utilized to enhance magnetic resonance imaging (MRI) in vivo and controlled drug release in vitro (Paper I). Poly(ε-caprolactone) (PCL) was copolymerized with poly(ethylene glycol) (PEG) to achieve stealth property for in vivo purposes. Aluminum phthalocyanine, a photosensitizer and an anti-cancer drug, was encapsulated in the PEG-b-PCL NPs for photodynamic therapy during particle formation. The biodistribution of the prepared nanophotosensitizer showed targeted drug delivery toward lungs, liver and spleen as monitored by the intrinsic fluorescence of the photosensitizer (Paper II). The PEG-b-PCL NPs were loaded with SPION or surface functionalized with VivoTag 680XL fluorochrome and utilized for in vivo multimodal imaging, MRI and fluorescence imaging (Paper III). This thesis also presents stable and engineered PNPs obtained using reversible addition-fragmentation chain transfer (RAFT) mediated polymerization-induced self-assembly (PISA). Hydrophobic agents, nile red (NR) dye or doxorubicin (DOX) drug, were encapsulated in poly(N-[3- (dimethylamino) propyl] methacrylamide)-b-poly(methyl methacrylate) (PDMAPMA-b-PMMA) NPs via one-pot RAFT-mediated PISA in water (Paper IV). The PDMAPMA-b-PMMA NPs showed very monodisperse spheres and core-shell nanostructures. Stable and non-toxic poly(acrylic acid)-b-poly(butyl acrylate) (PAA-b-PBA) NPs, synthesized via RAFTmediated PISA in water, were surface engineered by allyl-functional groups prior to bio-conjugation for targeted drug delivery (Paper V). The engineered NPs retained their colloidal stability and size post-allyl functionalization. DOX was efficiently (90 %) encapsulated in the PAA-bPBA NPs during NPs formation. A controlled release pattern of DOX from PAA-b-PBA NPs was observed over 7 days.

  • 3.
    Asem, Heba
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Synthesis of Polymeric Nanocomposites for Drug Delivery and Bioimaging2016Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Nanomaterials have gained great attention for biomedical applications due to their extraordinary physico-chemical and biological properties. The current dissertation presents the design and development of multifunctional nanoparticles for molecular imaging and controlled drug delivery applications which include biodegradable polymeric nanoparticles, superparamagnetic iron oxide nanoparticles (SPION)/polymeric nanocomposite for magnetic resonance imaging (MRI) and drug delivery, manganese-doped zinc sulfide (Mn:ZnS) quantum dots (QDs)/ SPION/ polymeric nanocomposites for fluorescence imaging, MRI and drug delivery.Bioimaging is an important function of multifunctional nanoparticles in this thesis. Imaging probes were made of SPION and Mn:ZnS QDs for in vitro and in vivo imaging. The SPION have been prepared through a high temperature decomposition method to be used as MRI contrast agent. SPION and Mn:ZnS were encapsulated into poly (lactic-co-glycolic) acid (PLGA) nanoparticles during the particles formation. The hydrophobic model drug, busulphan, was loaded in the PLGA vesicles in the composite particles. T2*-weighted MRI of SPION-Mn:ZnS-PLGA phantoms exhibited enhanced negative contrast with r2* relaxivity of 523 mM-1 s-1. SPION-Mn:ZnS-PLGA-NPs have been successfully applied to enhance the contrast of liver in rat model.The biodegradable and biocompatible poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) was used as matrix materials for polymeric nanoparticles -based drug delivery system. The PEG-PCL nanoparticles have been constructed to encapsulate SPION and therapeutic agent. The encapsulation efficiency of busulphan was found to be ~ 83 %. PEG-PCL nanoparticles showed a sustained release of the loaded busulphan over a period of 10 h. The SPION-PEG-PCL phantoms showed contrast enhancement in T2*-weighted MRI. Fluorescein-labeled PEG-PCL nanoparticles have been observed in the cytoplasm of the murine macrophage cells (J774A) by fluorescence microscopy. Around 100 % cell viability were noticed for PEG-PCL nanoparticles when incubated with HL60 cell line. The in vivo biodistribution of fluorescent tagged PEG-PCL nanoparticles demonstrated accumulation of PEG-PCL nanoparticles in different tissues including lungs, spleen, liver and kidneys after intravenous administration.

  • 4.
    Asem, Heba
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM. Karolinska Inst, Sweden.
    Abd El-Fattah, Ahmed
    Nafee, Noha
    Zhao, Ying
    Khalil, Labiba
    Muhammed, Mamoun
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Hassan, Moustapha
    Kandil, Sherif
    Development and biodistribution of a theranostic aluminum phthalocyanine nanophotosensitizer2016Inngår i: Photodiagnosis and Photodynamic Therapy, ISSN 1572-1000, E-ISSN 1873-1597, Vol. 13, s. 48-57Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Aluminum phthalocyanine (AlPc) is an efficient second generation photosensitizer (PS) with high fluorescence ability. Its use in photodynamic therapy (PDT) is hampered by hydrophobicity and poor biodistribution. Methods: AlPc was converted to a biocompatible nanostructure by incorporation into amphiphilic polyethylene glycol-polycaprolactone (PECL) copolymer nanoparticles, allowing efficient entrapment of the PS in the hydrophobic core, water dispersibility and biodistribution enhancement by PEG-induced surface characteristics. A series of synthesized PECL copolymers were used to prepare nanophotosensitizers with an average diameter of 66.5-99.1 nm and encapsulation efficiency (EE%) of 66.4-78.0%. One formulation with favorable colloidal properties and relatively slow release over 7 days was selected for in vitro photophysical assessment and in vivo biodistribution studies in mice. Results: The photophysical properties of AlPc were improved by encapsulating AlPc into PECL-NPs, which showed intense fluorescence emission at 687 nm and no AlPc aggregation has been induced after entrapment into the nanoparticles. Biodistribution of AlPc loaded NPs (AlPc-NPs) and free AlPc drug in mice was monitored by in vivo whole body fluorescence imaging and ex vivo organ imaging, with in vivo imaging system (IVIS). Compared to a AlPc solution in aqueous TWEEN 80 (2 w/v%), the developed nanophotosensitizer showed targeted drug delivery to lungs, liver and spleen as monitored by the intrinsic fluorescence of AlPc at different time points (1 h, 24 h and 48 h) post iv. administration. Conclusions: The AlPc-based copolymer nanoparticles developed offer potential as a single agent multifunctional theranostic nanophotosensitizer for PDT coupled with imaging-guided drug delivery and biodistribution, and possibly also fluorescence diagnostics.

  • 5.
    Asem, Heba
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, NOVUM, Karolinska Institutet (KI), Stockholm, Sweden; Department of Materials Science, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, Egypt.
    Abd El-Fattah, Ahmed
    Nafee, Noha
    Zhao, Ying
    Khalil, Labiba
    Muhammed, Mamoun
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Hassan, Moustapha
    Kandil, Sherif
    Development and biodistribution of a theranostic aluminumphthalocyanine nanophotosensitizer2016Inngår i: Photodiagnosis and Photodynamic Therapy, ISSN 1572-1000, E-ISSN 1873-1597, Vol. 13, s. 48-57Artikkel i tidsskrift (Fagfellevurdert)
  • 6.
    Asem, Heba
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Polymeric Nanoparticles Explored for Drug-Delivery Applications2018Inngår i: Gels and Other Soft Amorphous Solids, American Chemical Society (ACS), 2018, s. 315-331Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    The main drawback of conventional chemotherapeutics is their non-specific distribution in the body which causes serious side effects to healthy cells. As a consequence, the drug concentration reaching the tumor is reduced, resulting in suboptimal therapeutic efficacy. The discovery that polymer-based nanomaterials can be used for controlled drug delivery systems offers well-defined reservoirs for a wide spectrum of pharmaceutical agents, with the ability to reduce the toxic response. The most widely explored polymeric nanocarriers, including biodegradable polymers, amphiphilic copolymers and polymers that form unimolecular micelles, are discussed in this brief chapter.

  • 7.
    Asem, Heba
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM. Karolinska Institutet (KI), Sweden.
    Zhao, Ying
    Ye, Fei
    Barrefelt, Asa
    Abedi-Valugerdi, Manuchehr
    El-Sayed, Ramy
    El-Serafi, Ibrahim
    Abu-Salah, Khalid M.
    Hamm, Jorg
    Muhammed, Mamoun
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Hassan, Moustapha
    Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging2016Inngår i: Journal of Nanobiotechnology, ISSN 1477-3155, Vol. 14, nr 1, artikkel-id 82Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Multifunctional nanocarriers for controlled drug delivery, imaging of disease development and follow-up of treatment efficacy are promising novel tools for disease diagnosis and treatment. In the current investigation, we present a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as a model for lipophilic antineoplastic drugs were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) micelles via the emulsion-evaporation method, and PEG-PCL was labelled with VivoTag 680XL fluorochrome for in vivo fluorescence imaging. Results: Busulphan entrapment efficiency was 83% while the drug release showed a sustained pattern over 10 h. SPION loaded-PEG-PCL micelles showed contrast enhancement in T-2*-weighted MRI with high r(2)* relaxivity. In vitro cellular uptake of PEG-PCL micelles labeled with fluorescein in J774A cells was found to be time-dependent. The maximum uptake was observed after 24 h of incubation. The biodistribution of PEG-PCL micelles functionalized with VivoTag 680XL was investigated in Balb/c mice over 48 h using in vivo fluorescence imaging. The results of real-time live imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL micelles were highly distributed into the lungs during the first 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h post administration. No pathological impairment was found in the major organs studied. Conclusions: Thus, with loaded contrast agent and conjugated fluorochrome, PEG-PCL micelles as biodegradable and biocompatible nanocarriers are efficient multimodal imaging agents, offering high drug loading capacity, and sustained drug release. These might offer high treatment efficacy and real-time tracking of the drug delivery system in vivo, which is crucial for designing of an efficient drug delivery system.

  • 8.
    Asem, Heba
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Zheng, Wenyi
    Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden.
    Nilsson, Fritjof
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Zhang, Yuning
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Hassan, Moustapha
    Clinical Research Centrum, Department of Stem Cell Transplantation (CAST), Karolinska University Hospital-Huddinge, SE-141 86 Stockholm, Sweden.
    Malmström, Eva
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    Functional nano-carriers for drug delivery by surface engineering of polymeric nanoparticles post-PISAManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Engineered polymeric nanoparticles (NPs) have been comprehensively explored as potential platforms for diagnosis and targeted therapy for several diseases including cancer. Herein, we designed functional poly(acrylic acid)-b-poly(butyl acrylate) (PAA-b-PBA) NPs using reversible addition-fragmentation chain-transfer (RAFT)-mediated emulsion polymerization via polymerization-induced self-assembly (PISA). The hydrophilic PAA-macroRAFT, forming a stabilizing shell (i.e. corona), was chain-extended using the hydrophobic monomer n-butyl acrylate (n-BA), resulting in stable, monodisperse and reproducible PAA-b-PBA NPs, typically having a diameter of 130 nm. Two approaches of surface engineering of the PAA-b-PBA NPs post-PISA were explored; a two-step and a one-step approach. In the two-step approach, the hydrophilic NP-shell corona was modified with allyl-groups under mild conditions using allylamine in water which resulted in stable allyl-functional NPs (allyl-NPs) suitable for further bio-conjugation. Their versatility was investigated by the subsequent conjugation of a thiol-functional fluorescent dye (BODIPY-SH) to the allyl-groups using click chemistry, in order to mimic the attachment of a thiol-functional target ligand. The average size and size distribution of the corresponding NPs did not change after BODIPY-conjugation. Neither the NPs nor allyl-NPs showed significant cytotoxicity towards RAW264.7 or MCF-7 cell lines, which indicates their desirable safety profile. A one-step approach to concurrently conjugate allyl-groups and a fluorescent dye (FITC) to the preformed PAA-b-PBA NPs was investigated. The cellular uptake of the FITC-NPs using J774A cells in vitro was found to be time- and concentration-dependent. The anti-cancer drug, doxorubicin, was efficiently (90%) encapsulated into the PAA-b-PBA NPs during NP formation. After a small burst release during the first two hours, a controlled release pattern over 7 days was observed. The present investigation demonstrates a potential method to functionalize polymeric NPs post-PISA to produce targeted drug delivery carriers.

  • 9. Barrefelt, Åsa
    et al.
    Paradossi, Gaio
    Asem, Heba
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Margheritelli, Silvia
    Saghafian, Maryam
    Oddo, Letizia
    Muhammed, Mamoun
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Funktionella material, FNM.
    Aspelin, Peter
    Hassan, Moustapha
    Brismar, Torkel B.
    DYNAMIC MR IMAGING, BIODISTRIBUTION AND PHARMACOKINETICS OF POLYMER SHELLED MICROBUBBLES CONTAINING SPION2014Inngår i: NANO, ISSN 1793-2920, Vol. 9, nr 6, s. 1450069-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Magnetic Resonance Imaging (MRI) is a noninvasive diagnostic method that provides information on morphological and physiological changes of the internal organs over time. Imaging and measurements can be repeated on the same subject, thereby reducing inter-individual variability effects and hence the number of subjects required. A potential MRI contrast agent consisting of microbubbles embedded with superparamagnetic iron oxide nanoparticles (SPION) in the shell (SPION MBs) was injected intravenously into rats to determine their biodistribution and pharmacokinetics using MR imaging. Agarose phantoms containing SPION MBs were scanned using 3 T MRI to construct a standard curve. Rats were injected with SPION MBs, free SPION or plain MBs and scanned dynamically at 3 T using a clinical MR scanner. The relaxation rate (R2*) was studied over time as a measure of the iron oxide concentrations to enable calculation of the pharmacokinetic parameters. The kinetics of SPION MBs in the liver was fitted to a one-compartment model. Furthermore, the biological fate of SPION MBs was examined via a histological survey of tissue samples using Perls' Prussian blue staining and immunohistochemistry (IHC). 1.2 h after injection of SPION MBs, T2* of the liver had decreased to its minimum. The elimination half-life of SPION MBs was 598.2 +/- 97.3 h, while the half-life for SPION was 222.6 +/- 26.4 h. Moreover, our study showed that SPION MBs were taken up by the macrophages in the lungs, spleen and liver. MBs labeled with SPION can be used for MR imaging. Moreover, MRI is a reliable and noninvasive tool that can be utilized in pharmacokinetic investigations of future contrast agents using SPION MBs and SPION in the rat.

  • 10.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Brismar, Hjalmar
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Zhang, Yuning
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malkoch, Michael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    In situ encapsulation of Nile red or Doxorubicin during RAFT-mediated emulsion polymerization via polymerization-induced self-assembly for biomedical applications2020Inngår i: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935Artikkel i tidsskrift (Fagfellevurdert)
  • 11.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Brismar, Hjalmar
    KTH, Tidigare Institutioner (före 2005), Fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Zhang, Yuning
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malkoch, Michael
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi. KTH, Tidigare Institutioner (före 2005), Polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Malmström, Eva
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuskript (preprint) (Annet vitenskapelig)
  • 12. Fei, Ye
    et al.
    Barrefelt, Åsa
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Abedi-Valugerdi, Manuchehr
    El-Serafi, Ibrahim
    Saghafian, Maryam
    Abu-Salah, Khalid
    Alrokayan, Salman
    Muhammed, Mamoun
    Hassan, Moustapha
    Biodegradable polymeric vesicles containing magnetic nanoparticles,quantum dots and anticancer drugs for drug delivery and imaging2014Inngår i: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 35, s. 3885-3894Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly(lactic-co-glycolic acid) (PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (Mn:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2∗-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2∗ relaxivity of approximately 523 s(-1) mM(-1) Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability of PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicle degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

  • 13. Nafee, Noha
    et al.
    Youssef, Alaa
    El-Gowelli, Hanan
    Asem, Heba
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Kandil, Sherif
    Antibiotic-free nanotherapeutics: Hypericin nanoparticles thereof forimproved in vitro and in vivo antimicrobial photodynamic therapy andwound healing2013Inngår i: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 454, s. 249-258Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Hypericin (HY) is a naturally-occurring, potent photosensitizer. However, its lipophilicity limits its therapeutic applications. Our attempt is, thus, to develop a biodegradable nanocarrier for hypericin capable of preserving its antibacterial photoactivity. Amphiphilic block copolymers were synthesized to prepare hypericin-laden nanoparticles (HY-NPs). The antimicrobial photoactivity of HY-NPs was assessed; in vitro against biofilm and planktonic cells of methicillin resistant Staphylococcus aureus (MRSA) clinical isolates and in vivo on infected wounds in rats. Nanoparticles of 45 nm in diameter ensured higher amounts of reactive oxygen species upon irradiation. HY-NPs demonstrated superior inhibition of biofilm over planktonic cells. In vivo wound healing studies in rats revealed faster healing, better epithelialization, keratinization and development of collagen fibers when HY-NPs were applied. Determination of growth factors and inflammatory mediators in the wound area confirmed superior healing potential of nanoencapsulated hypericin suggesting that hypericin can join the era of antibiotic-free antimicrobial therapy

1 - 13 of 13
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf