Ändra sökning
Avgränsa sökresultatet
1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Caccamo, Sergio
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Chen, Xi
    KTH.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Haustein, Joshua
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Marzinotto, Alejandro
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yannis
    KTH.
    Ögren, Petter
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017Ingår i: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Konferensbidrag (Övrig (populärvetenskap, debatt, mm))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 2.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Unsupervised construction of 4D semantic maps in a long-term autonomy scenario2017Doktorsavhandling, monografi (Övrigt vetenskapligt)
    Abstract [en]

    Robots are operating for longer times and collecting much more data than just a few years ago. In this setting we are interested in exploring ways of modeling the environment, segmenting out areas of interest and keeping track of the segmentations over time, with the purpose of building 4D models (i.e. space and time) of the relevant parts of the environment.

    Our approach relies on repeatedly observing the environment and creating local maps at specific locations. The first question we address is how to choose where to build these local maps. Traditionally, an operator defines a set of waypoints on a pre-built map of the environment which the robot visits autonomously. Instead, we propose a method to automatically extract semantically meaningful regions from a point cloud representation of the environment. The resulting segmentation is purely geometric, and in the context of mobile robots operating in human environments, the semantic label associated with each segment (i.e. kitchen, office) can be of interest for a variety of applications. We therefore also look at how to obtain per-pixel semantic labels given the geometric segmentation, by fusing probabilistic distributions over scene and object types in a Conditional Random Field.

    For most robotic systems, the elements of interest in the environment are the ones which exhibit some dynamic properties (such as people, chairs, cups, etc.), and the ability to detect and segment such elements provides a very useful initial segmentation of the scene. We propose a method to iteratively build a static map from observations of the same scene acquired at different points in time. Dynamic elements are obtained by computing the difference between the static map and new observations. We address the problem of clustering together dynamic elements which correspond to the same physical object, observed at different points in time and in significantly different circumstances. To address some of the inherent limitations in the sensors used, we autonomously plan, navigate around and obtain additional views of the segmented dynamic elements. We look at methods of fusing the additional data and we show that both a combined point cloud model and a fused mesh representation can be used to more robustly recognize the dynamic object in future observations. In the case of the mesh representation, we also show how a Convolutional Neural Network can be trained for recognition by using mesh renderings.

    Finally, we present a number of methods to analyse the data acquired by the mobile robot autonomously and over extended time periods. First, we look at how the dynamic segmentations can be used to derive a probabilistic prior which can be used in the mapping process to further improve and reinforce the segmentation accuracy. We also investigate how to leverage spatial-temporal constraints in order to cluster dynamic elements observed at different points in time and under different circumstances. We show that by making a few simple assumptions we can increase the clustering accuracy even when the object appearance varies significantly between observations. The result of the clustering is a spatial-temporal footprint of the dynamic object, defining an area where the object is likely to be observed spatially as well as a set of time stamps corresponding to when the object was previously observed. Using this data, predictive models can be created and used to infer future times when the object is more likely to be observed. In an object search scenario, this model can be used to decrease the search time when looking for specific objects.

  • 3.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bore, Nils
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Autonomous meshing, texturing and recognition of object models with a mobile robot2017Ingår i: 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Bicchi, A Okamura, A, IEEE , 2017, s. 5071-5078Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a system for creating object models from RGB-D views acquired autonomously by a mobile robot. We create high-quality textured meshes of the objects by approximating the underlying geometry with a Poisson surface. Our system employs two optimization steps, first registering the views spatially based on image features, and second aligning the RGB images to maximize photometric consistency with respect to the reconstructed mesh. We show that the resulting models can be used robustly for recognition by training a Convolutional Neural Network (CNN) on images rendered from the reconstructed meshes. We perform experiments on data collected autonomously by a mobile robot both in controlled and uncontrolled scenarios. We compare quantitatively and qualitatively to previous work to validate our approach.

  • 4.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bore, Nils
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Autonomous meshing, texturing and recognition of objectmodels with a mobile robot2017Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a system for creating object modelsfrom RGB-D views acquired autonomously by a mobile robot.We create high-quality textured meshes of the objects byapproximating the underlying geometry with a Poisson surface.Our system employs two optimization steps, first registering theviews spatially based on image features, and second aligningthe RGB images to maximize photometric consistency withrespect to the reconstructed mesh. We show that the resultingmodels can be used robustly for recognition by training aConvolutional Neural Network (CNN) on images rendered fromthe reconstructed meshes. We perform experiments on datacollected autonomously by a mobile robot both in controlledand uncontrolled scenarios. We compare quantitatively andqualitatively to previous work to validate our approach.

  • 5.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Bore, Nils
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Meta-rooms: Building and Maintaining Long Term Spatial Models in a Dynamic World2014Ingår i: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE conference proceedings, 2014, s. 1854-1861Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a novel method for re-creating the static structure of cluttered office environments -which we define as the " meta-room" -from multiple observations collected by an autonomous robot equipped with an RGB-D depth camera over extended periods of time. Our method works directly with point clusters by identifying what has changed from one observation to the next, removing the dynamic elements and at the same time adding previously occluded objects to reconstruct the underlying static structure as accurately as possible. The process of constructing the meta-rooms is iterative and it is designed to incorporate new data as it becomes available, as well as to be robust to environment changes. The latest estimate of the meta-room is used to differentiate and extract clusters of dynamic objects from observations. In addition, we present a method for re-identifying the extracted dynamic objects across observations thus mapping their spatial behaviour over extended periods of time.

  • 6.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Claici, Sebastian
    Wendt, Axel
    Automatic Room Segmentation From Unstructured 3-D Data of Indoor Environments2017Ingår i: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 2, nr 2, s. 749-756Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present an automatic approach for the task of reconstructing a 2-D floor plan from unstructured point clouds of building interiors. Our approach emphasizes accurate and robust detection of building structural elements and, unlike previous approaches, does not require prior knowledge of scanning device poses. The reconstruction task is formulated as a multiclass labeling problem that we approach using energy minimization. We use intuitive priors to define the costs for the energy minimization problem and rely on accurate wall and opening detection algorithms to ensure robustness. We provide detailed experimental evaluation results, both qualitative and quantitative, against state-of-the-art methods and labeled ground-truth data.

  • 7.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ekekrantz, Johan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Unsupervised learning of spatial-temporal models of objects in a long-term autonomy scenario2015Ingår i: 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), IEEE , 2015, s. 5678-5685Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a novel method for clustering segmented dynamic parts of indoor RGB-D scenes across repeated observations by performing an analysis of their spatial-temporal distributions. We segment areas of interest in the scene using scene differencing for change detection. We extend the Meta-Room method and evaluate the performance on a complex dataset acquired autonomously by a mobile robot over a period of 30 days. We use an initial clustering method to group the segmented parts based on appearance and shape, and we further combine the clusters we obtain by analyzing their spatial-temporal behaviors. We show that using the spatial-temporal information further increases the matching accuracy.

  • 8.
    Ambrus, Rares
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Unsupervised object segmentation through change detection in a long term autonomy scenario2016Ingår i: IEEE-RAS International Conference on Humanoid Robots, IEEE, 2016, s. 1181-1187Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work we address the problem of dynamic object segmentation in office environments. We make no prior assumptions on what is dynamic and static, and our reasoning is based on change detection between sparse and non-uniform observations of the scene. We model the static part of the environment, and we focus on improving the accuracy and quality of the segmented dynamic objects over long periods of time. We address the issue of adapting the static structure over time and incorporating new elements, for which we train and use a classifier whose output gives an indication of the dynamic nature of the segmented elements. We show that the proposed algorithms improve the accuracy and the rate of detection of dynamic objects by comparing with a labelled dataset.

  • 9.
    Bore, Nils
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Efficient retrieval of arbitrary objects from long-term robot observations2017Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 91, s. 139-150Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present a novel method for efficient querying and retrieval of arbitrarily shaped objects from large amounts of unstructured 3D point cloud data. Our approach first performs a convex segmentation of the data after which local features are extracted and stored in a feature dictionary. We show that the representation allows efficient and reliable querying of the data. To handle arbitrarily shaped objects, we propose a scheme which allows incremental matching of segments based on similarity to the query object. Further, we adjust the feature metric based on the quality of the query results to improve results in a second round of querying. We perform extensive qualitative and quantitative experiments on two datasets for both segmentation and retrieval, validating the results using ground truth data. Comparison with other state of the art methods further enforces the validity of the proposed method. Finally, we also investigate how the density and distribution of the local features within the point clouds influence the quality of the results.

  • 10.
    Brucker, Manuel
    et al.
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Durner, Maximilian
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Ambrus, Rares
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Marton, Zoltan Csaba
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Wendt, Axel
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Arras, Kai O.
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Triebel, Rudolph
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany.;Tech Univ Munich, Dep Comp Sci, Munich, Germany..
    Semantic Labeling of Indoor Environments from 3D RGB Maps2018Ingår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, s. 1871-1878Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.

  • 11. Faeulhammer, Thomas
    et al.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Burbridge, Christopher
    Zillich, Micheal
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Hawes, Nick
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Vincze, Marcus
    Autonomous Learning of Object Models on a Mobile Robot2017Ingår i: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 2, nr 1, s. 26-33, artikel-id 7393491Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this article we present and evaluate a system which allows a mobile robot to autonomously detect, model and re-recognize objects in everyday environments. Whilst other systems have demonstrated one of these elements, to our knowledge we present the first system which is capable of doing all of these things, all without human interaction, in normal indoor scenes. Our system detects objects to learn by modelling the static part of the environment and extracting dynamic elements. It then creates and executes a view plan around a dynamic element to gather additional views for learning. Finally these views are fused to create an object model. The performance of the system is evaluated on publicly available datasets as well as on data collected by the robot in both controlled and uncontrolled scenarios.

  • 12. Hawes, N
    et al.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Bore, Nils
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Hanheide, Marc
    et al.,
    The STRANDS Project Long-Term Autonomy in Everyday Environments2017Ingår i: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 24, nr 3, s. 146-156Artikel i tidskrift (Refereegranskat)
  • 13. Krajnik, T.
    et al.
    Kulich, M.
    Mudrová, L.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Duckett, T.
    Where's waldo at time t ?: using spatio-temporal models for mobile robot search2015Ingår i: Proceedings - IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2015, nr June, s. 2140-2146Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present a novel approach to mobile robot search for non-stationary objects in partially known environments. We formulate the search as a path planning problem in an environment where the probability of object occurrences at particular locations is a function of time. We propose to explicitly model the dynamics of the object occurrences by their frequency spectra. Using this spectral model, our path planning algorithm can construct plans that reflect the likelihoods of object locations at the time the search is performed. Three datasets collected over several months containing person and object occurrences in residential and office environments were chosen to evaluate the approach. Several types of spatio-temporal models were created for each of these datasets and the efficiency of the search method was assessed by measuring the time it took to locate a particular object. The results indicate that modeling the dynamics of object occurrences reduces the search time by 25% to 65% compared to maps that neglect these dynamics.

  • 14.
    Thippur, Akshaya
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Agrawal, G.
    Del Burgo, Adria Gallart
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ramesh, J. H.
    Jha, M. K.
    Akhil, M. B. S. S.
    Shetty, N. B.
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    KTH-3D-TOTAL: A 3D dataset for discovering spatial structures for long-term autonomous learning2014Ingår i: 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, IEEE , 2014, s. 1528-1535Konferensbidrag (Refereegranskat)
    Abstract [en]

    Long-term autonomous learning of human environments entails modelling and generalizing over distinct variations in: object instances in different scenes, and different scenes with respect to space and time. It is crucial for the robot to recognize the structure and context in spatial arrangements and exploit these to learn models which capture the essence of these distinct variations. Table-tops posses a typical structure repeatedly seen in human environments and are identified by characteristics of being personal spaces of diverse functionalities and dynamically changing due to human interactions. In this paper, we present a 3D dataset of 20 office table-tops manually observed and scanned 3 times a day as regularly as possible over 19 days (461 scenes) and subsequently, manually annotated with 18 different object classes, including multiple instances. We analyse the dataset to discover spatial structures and patterns in their variations. The dataset can, for example, be used to study the spatial relations between objects and long-term environment models for applications such as activity recognition, context and functionality estimation and anomaly detection.

  • 15.
    Wang, Zhan
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för kemivetenskap (CHE).
    Folkesson, John
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Modeling motion patterns of dynamic objectsby IOHMM2014Ingår i: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, Chicago, IL: IEEE conference proceedings, 2014, s. 1832-1838Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents a novel approach to model motion patterns of dynamic objects, such as people and vehicles, in the environment with the occupancy grid map representation. Corresponding to the ever-changing nature of the motion pattern of dynamic objects, we model each occupancy grid cell by an IOHMM, which is an inhomogeneous variant of the HMM. This distinguishes our work from existing methods which use the conventional HMM, assuming motion evolving according to a stationary process. By introducing observations of neighbor cells in the previous time step as input of IOHMM, the transition probabilities in our model are dependent on the occurrence of events in the cell's neighborhood. This enables our method to model the spatial correlation of dynamics across cells. A sequence processing example is used to illustrate the advantage of our model over conventional HMM based methods. Results from the experiments in an office corridor environment demonstrate that our method is capable of capturing dynamics of such human living environments.

  • 16.
    Welle, Michael
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ericson, Ludvig
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ambrus, Rares
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Jensfelt, Patric
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    On the use of Unmanned Aerial Vehicles for Autonomous Object Modeling2017Ingår i: 2017 European Conference on Mobile Robots, ECMR 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, artikel-id 8098656Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we present an end to end object modeling pipeline for an unmanned aerial vehicle (UAV). We contribute a UAV system which is able to autonomously plan a path, navigate, acquire views of an object in the environment from which a model is built. The UAV does collision checking of the path and navigates only to those areas deemed safe. The data acquired is sent to a registration system which segments out the object of interest and fuses the data. We also show a qualitative comparison of our results with previous work.

1 - 16 av 16
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf