Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tunay, Tural
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Adana Alparslan Turkes Science and Technology University, Faculty of Engineering, Department of Mechanical Engineering, 01180 Adana, Turkey.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    The significance of roll on the dynamics of ground vehicles subjected to crosswind gusts by two-way coupled simulation of aero- and vehicle dynamics2019In: 26th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks, 2019Conference paper (Other academic)
    Abstract [en]

    Improvements in vehicle technologies in recent decades enable the use of lighter materials and the development of control systems for autonomous vehicles. However, these improvements lead to a need for better understanding of how flow phenomena affect crosswind stability of ground vehicles which will enable the design of the less wind-sensitive vehicles. Therefore, the present study investigates the significance of roll on the dynamics of ground vehicles subjected to crosswind gusts. It includes a multidisciplinary approach in which there is a two-way coupled simulation between aerodynamics and vehicle dynamics equations. As a result of the investigations, significant differences have been found be- tween the computations considering no-roll and roll motions.

  • 2.
    Tural, Tunay
    et al.
    Adana Science and Technology University, Faculty of Engineering, Department of Mechanical Engineering, Adana 01180, Turkey.
    Firat, Erhan
    Sahin, Besir
    Experimental investigation of the flow around a simplified ground vehicle under effects of the steady crosswind2018In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, Vol. 71, p. 137-152Article in journal (Refereed)
    Abstract [en]

    Crosswinds which stem from on-road flow conditions can deteriorate a ground vehicle's driving performance. In spite of the numerous studies investigating aerodynamics of the ground vehicles in the previous literature, there is still a need for thorough understanding of the underlying flow phenomena related to crosswind sensitivity of the ground vehicles. Therefore, the present study is aimed to investigate characteristics of the flow features around the ground vehicles under steady crosswind conditions within a range of yaw angles 0 degrees <= beta <= 15 degrees using the Ahmed vehicle model with rear slant angles of alpha = 25 degrees and 35 degrees. Throughout the investigations, flow visualizations using dye injection technique and velocity measurements using particle image velocimetry PIV technique are conducted. The Reynolds number of the flow which is based on the free stream flow velocity U = 200 mm/s and height of the model H = 72 mm is Re-H = 1.4 x 10(4). Results are presented in terms of time averaged vorticity <omega> contours and streamline <Psi> patterns together with velocity magnitude ((< u >(2)+ < w >(2))(1/2)/U) of the flow fields. Additionally, turbulence quantities such as Reynolds stresses < u'w' >/U-2 and turbulent kinetic energy TKE are presented and discussed in details. Results of the present study show that characteristics of the flow features in the near wake region downstream of the Ahmed model are very sensitive to the effects of the crosswind.

  • 3.
    Tural, Tunay
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    O'Reilly, Ciarán J.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    On coupling methods used to simulate the dynamic characteristics of heavy ground vehicles subjected to crosswindIn: Article in journal (Refereed)
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf