Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aghazadeh, Omid
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Data Driven Visual Recognition2014Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    This thesis is mostly about supervised visual recognition problems. Based on a general definition of categories, the contents are divided into two parts: one which models categories and one which is not category based. We are interested in data driven solutions for both kinds of problems.

    In the category-free part, we study novelty detection in temporal and spatial domains as a category-free recognition problem. Using data driven models, we demonstrate that based on a few reference exemplars, our methods are able to detect novelties in ego-motions of people, and changes in the static environments surrounding them.

    In the category level part, we study object recognition. We consider both object category classification and localization, and propose scalable data driven approaches for both problems. A mixture of parametric classifiers, initialized with a sophisticated clustering of the training data, is demonstrated to adapt to the data better than various baselines such as the same model initialized with less subtly designed procedures. A nonparametric large margin classifier is introduced and demonstrated to have a multitude of advantages in comparison to its competitors: better training and testing time costs, the ability to make use of indefinite/invariant and deformable similarity measures, and adaptive complexity are the main features of the proposed model.

    We also propose a rather realistic model of recognition problems, which quantifies the interplay between representations, classifiers, and recognition performances. Based on data-describing measures which are aggregates of pairwise similarities of the training data, our model characterizes and describes the distributions of training exemplars. The measures are shown to capture many aspects of the difficulty of categorization problems and correlate significantly to the observed recognition performances. Utilizing these measures, the model predicts the performance of particular classifiers on distributions similar to the training data. These predictions, when compared to the test performance of the classifiers on the test sets, are reasonably accurate.

    We discuss various aspects of visual recognition problems: what is the interplay between representations and classification tasks, how can different models better adapt to the training data, etc. We describe and analyze the aforementioned methods that are designed to tackle different visual recognition problems, but share one common characteristic: being data driven.

  • 2.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Azizpour, Hossein
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Mixture component identification and learning for visual recognition2012Ingår i: Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI, Springer, 2012, s. 115-128Konferensbidrag (Refereegranskat)
    Abstract [en]

    The non-linear decision boundary between object and background classes - due to large intra-class variations - needs to be modelled by any classifier wishing to achieve good results. While a mixture of linear classifiers is capable of modelling this non-linearity, learning this mixture from weakly annotated data is non-trivial and is the paper's focus. Our approach is to identify the modes in the distribution of our positive examples by clustering, and to utilize this clustering in a latent SVM formulation to learn the mixture model. The clustering relies on a robust measure of visual similarity which suppresses uninformative clutter by using a novel representation based on the exemplar SVM. This subtle clustering of the data leads to learning better mixture models, as is demonstrated via extensive evaluations on Pascal VOC 2007. The final classifier, using a HOG representation of the global image patch, achieves performance comparable to the state-of-the-art while being more efficient at detection time.

  • 3.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Large Scale, Large Margin Classification using Indefinite Similarity MeasurensManuskript (preprint) (Övrigt vetenskapligt)
  • 4.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Properties of Datasets Predict the Performance of Classifiers2013Ingår i: BMVC 2013 - Electronic Proceedings of the British Machine Vision Conference 2013, British Machine Vision Association, BMVA , 2013Konferensbidrag (Refereegranskat)
    Abstract [en]

    It has been shown that the performance of classifiers depends not only on the number of training samples, but also on the quality of the training set [10, 12]. The purpose of this paper is to 1) provide quantitative measures that determine the quality of the training set and 2) provide the relation between the test performance and the proposed measures. The measures are derived from pairwise affinities between training exemplars of the positive class and they have a generative nature. We show that the performance of the state of the art methods, on the test set, can be reasonably predicted based on the values of the proposed measures on the training set. These measures open up a wide range of applications to the recognition community enabling us to analyze the behavior of the learning algorithms w.r.t the properties of the training data. This will in turn enable us to devise rules for the automatic selection of training data that maximize the quantified quality of the training set and thereby improve recognition performance.

  • 5.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Properties of Datasets Predict the Performance of Classifiers2013Manuskript (preprint) (Övrigt vetenskapligt)
  • 6.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Multi view registration for novelty/background separation2012Ingår i: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE Computer Society, 2012, s. 757-764Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a system for the automatic segmentation of novelties from the background in scenarios where multiple images of the same environment are available e.g. obtained by wearable visual cameras. Our method finds the pixels in a query image corresponding to the underlying background environment by comparing it to reference images of the same scene. This is achieved despite the fact that all the images may have different viewpoints, significantly different illumination conditions and contain different objects cars, people, bicycles, etc. occluding the background. We estimate the probability of each pixel, in the query image, belonging to the background by computing its appearance inconsistency to the multiple reference images. We then, produce multiple segmentations of the query image using an iterated graph cuts algorithm, initializing from these estimated probabilities and consecutively combine these segmentations to come up with a final segmentation of the background. Detection of the background in turn highlights the novel pixels. We demonstrate the effectiveness of our approach on a challenging outdoors data set.

  • 7.
    Aghazadeh, Omid
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Novelty Detection from an Ego-Centric perspective2011Ingår i: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2011, s. 3297-3304Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper demonstrates a system for the automatic extraction of novelty in images captured from a small video camera attached to a subject's chest, replicating his visual perspective, while performing activities which are repeated daily. Novelty is detected when a (sub)sequence cannot be registered to previously stored sequences captured while performing the same daily activity. Sequence registration is performed by measuring appearance and geometric similarity of individual frames and exploiting the invariant temporal order of the activity. Experimental results demonstrate that this is a robust way to detect novelties induced by variations in the wearer's ego-motion such as stopping and talking to a person. This is an essentially new and generic way of automatically extracting information of interest to the camera wearer and can be used as input to a system for life logging or memory support.

  • 8.
    Naderi Parizi, Sobhan
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Tavakoli Targhi, Alireza
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Aghazadeh, Omid
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Eklundh, Jan-Olof
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    READING STREET SIGNS USING A GENERIC STRUCTURED OBJECT DETECTION AND SIGNATURE RECOGNITION APPROACH2009Ingår i: VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 2, SETUBAL: INSTICC-INST SYST TECHNOLOGIES INFORMATION CONTROL & COMMUNICATION , 2009, s. 346-355Konferensbidrag (Refereegranskat)
    Abstract [en]

    In the paper we address the applied problem of detecting and recognizing street name plates in urban images by a generic approach to structural object detection and recognition. A structured object is detected using a boosting approach and false positives are filtered using a specific method called the texture transform. In a second step the subregion containing the key information, here the text, is segmented out. Text is in this case characterized as texture and a texton based technique is applied. Finally the texts are recognized by using Dynamic Time Warping on signatures created from the identified regions. The recognition method is general and only requires text in some form, e.g. a list of printed words, but no image models of the plates for learning. Therefore, it can be shown to scale to rather large data sets. Moreover, due to its generality it applies to other cases, such as logo and sign recognition. On the other hand the critical part of the method lies in the detection step. Here it relied on knowledge about the appearance of street signs. However, the boosting approach also applies to other cases as long as the target region is structured in some way. The particular scenario considered deals with urban navigation and map indexing by mobile users, e.g. when the images are acquired by a mobile phone.

  • 9. Sharbafi, M. A.
    et al.
    Taleghani, S.
    Esmaeili, E.
    Haghighat, A. T.
    Aghazadeh, Omid
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    ICE matching, a novel approach for localization problem2010Ingår i: ICCAS 2010 - International Conference on Control, Automation and Systems, IEEE , 2010, s. 1904-1907Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper presents a novel technique for scan matching. The method is based on the family of feature to feature matching approaches. Our innovative method named ICE matching leads to a fast and accurate solution to solve the challenges of localization problem. Novelty in defining new features, matching mechanism and new state estimation approach, congregated in this method, creates a robust practical technique in terms of accuracy and convergence rate. Furthermore, The Comparison with some high quality scan matching methods from different viewpoints illustrates the performance of ICE matching.

  • 10.
    Sharif Razavian, Ali
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Aghazadeh, Omid
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Estimating Attention in Exhibitions Using Wearable Cameras2014Ingår i: Pattern Recognition (ICPR), 2014 22nd International Conference on, Stockholm, Sweden: IEEE conference proceedings, 2014, , s. 2691-2696s. 2691-2696Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper demonstrates a system for automatic detection of visual attention and identification of salient items at exhibitions (e.g. museum or an auction). The method is offline and is done on a video captured by a head mounted camera. Towards the estimation of attention, we define the notions of "saliency" and "interestingness" for an exhibition items. Our method is a combination of multiple state of the art techniques from different vision tasks such as tracking, image matching and retrieval. Many experiments are conducted to evaluate multiple aspects of our method. The method has proven to be robust to image blur, occlusion, truncation, and dimness. The experiments shows strong performance for the tasks of matching items, estimating focus frames and detecting salient and interesting items. This can be useful to the commercial vendors and museum curators and help them to understand which items are appealing more to the visitors.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf