Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aare, Magnus
    KTH, Superseded Departments (pre-2005), Aeronautical and Vehicle Engineering.
    Prevention of Head Injuries - focusing Specifically on Oblique Impacts2003Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    The massive number of injuries sustained in trafficaccidents is a growing problem worldwide, especially indeveloping countries. In 1998, more than one million peoplewere killed in traffic accidents worldwide, while about tentimes as many people were injured. Injuries to the centralnervous system and in particular to the headare especiallycritical to human life. This thesis contains five researchpapers looking at head injuries and head protection, proposingnew and more efficient ways of protecting the head, especiallyin traffic accidents.

    In order to define the national dimensions of the patternsof injuries incurred in motorcycle and moped accidents inSweden, a statistical survey was performed on data spanning a13-year period (Paper A). In Sweden, 27,100 individualsreceived in-patient care for motorcycle and moped accidentinjuries between 1987 and 1999. The motorcycle and moped injuryrate reduced in the second half of the study period, so toowere the total number of days of treatment per year. Males hadeight times the incidence of injuries of females. Head injurieswere the single most frequent diagnosis, followed by fracturesof the lower limbs. Concussion was the most frequent headinjury. These statistics clearly show the need for better headinjury prevention systems.

    According to the statistics, the most common type of impactto the head in motorcycle and moped accidents is an obliqueimpact. Oblique impacts generate rotations of the head, whichare a common cause of the most severe head injuries. Thereforea new test rig was constructed to reproduce oblique impacts toa helmeted dummy head, simulating those occurring in real lifeaccidents (Paper B). The new test rig was shown to provideuseful data at speeds of up to 50 km/h and with impact anglesvarying from purely tangential to purely radial. Thisinnovative test rig appears to provide an accurate method formeasuring accelerations in oblique impacts to helmets.

    When testing the performances of motorcycle helmets,discrepancies are usually seen in the test results. In order toevaluate these discrepancies, the finite element method (FEM)was used for simulations of a few oblique helmet impacts (PaperC). Amongthe parameters studied, the coefficients of frictionbetween the impacting surface and the helmet and between thehead and the helmet had the most significant influence on therotational accelerations. Additionally, a thinner andconsequently also weaker shell and a weaker liner, providedbetter protection for the impacts studied.

    Since there are no generally accepted global injurythresholds for oblique impacts to the human head, a study wasdesigned to propose new injury tolerances accounting for bothtranslations and rotations of the head (Paper D). In thatstudy, FE models of (a) a human head, (b) a Hybrid III dummyhead, and (c) the experimental helmet were used. Differentcriteria were proposed for different impact scenarios. Both thetranslational and the rotational effects were found to beimportant when proposing a predictor equation for the strainlevels experienced by the human brain in simulated impacts tothe head.

    In order to reduce the level of head injuries in society andto better understand helmet impacts from different aspect, aballistic impact was also studied (Paper E). The effects ofdifferent helmet shell stiffness and different angles ofimpacts were simulated. In this study, the same FE head modelfrom Paper D was used, however here it was protected with amodel of a composite ballistic helmet. It was concluded thatthe helmet shell should be stiff enough to prevent the insideof the shell from striking the skull, and that the strainsarising in the brain tissue were higher for some obliqueimpacts than for purely radial ones.

    In conclusion, this thesis describes the injury pattern ofmotorcycle and moped accidents in Sweden. This thesis showsthat the injuries sustained from these accidents can bereduced. In order to study both translational as well asrotational impacts, a new laboratory test rig was designed. Byusing the finite element method, it is possible to simulaterealistic impacts to the head and also to predict how severehead injuries may potentially be prevented.

    Download full text (pdf)
    FULLTEXT01
  • 2.
    Aare, Magnus
    KTH, Superseded Departments (pre-2005), Aeronautical Engineering.
    Prevention of head injury by a new type of helmet system2002Licentiate thesis, comprehensive summary (Other scientific)
  • 3.
    Aare, Magnus
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Evaluation of head response to ballistic helmet impacts, using FEM2003Conference paper (Refereed)
  • 4.
    Aare, Magnus
    et al.
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Kleiven, Svein
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Halldin, Peter
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Injury tolerances for oblique impact helmet testing2004In: International Journal of Crashworthiness, ISSN 1358-8265, E-ISSN 1754-2111, Vol. 9, no 1, p. 15-23Article in journal (Refereed)
    Abstract [en]

    The most frequently sustained severe injuries in motorcycle crashes are injuries to the head, and many of these are caused by rotational force. Rotational force is most commonly the result of oblique impacts to the head. Good testing methods for evaluating the effects of such impacts are currently lacking. There is also a need for improving our understanding of the effects of oblique impacts on the human head. Helmet standards currently in use today do not measure rotational effects in test dummy heads. However rotational force to the head results in large shear strains arising in the brain, which has been proposed as a cause of traumatic brain injuries like diffuse axonal injuries (DAI). This paper investigates a number of well-defined impacts, simulated using a detailed finite element (FE) model of the human head, an FE model of the Hybrid III dummy head and an FE model of a helmet. The same simulations were performed on both the FE human head model and the FE Hybrid III head model, both fitted with helmets. Simulations on both these heads were performed to describe the relationship between load levels in the FE Hybrid III head model and strains in the brain tissue in the FE human head model. In this study, the change in rotational velocity and the head injury criterion (HIC) value were chosen as appropriate measurements. It was concluded that both rotational and translational effects are important when predicting the strain levels in the human brain.

  • 5.
    Aare, Magnus
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Halldin, Peter
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Proposed global injury thresholds for oblique helmet impacts2003Conference paper (Refereed)
  • 6.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Aare, Magnus
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Improved helmet design and test methods to reduce rotational induced brain injuries2003Conference paper (Refereed)
    Abstract [en]

    Accidental impacts to the human head are often a combination of translational and rotational accelerations. The most frequent severe brain injuries from accidents are diffuse axonal injury (DAI) and subdural hematoma that both are reported to arise from rotational violence to the head. Most helmet standards used today do only take the translational accelerations into account. It is therefore suggested that an oblique impact test that measures both translational and rotational accelerations should be a complement to the helmet standards used today. This study investigates the potential to reduce the risk for DAI by improving the helmet design by use of an oblique helmet impact test rig. The method used is a detailed finite element (FE) model of the human head. The FE model is used to measure the maximum principal strain in the brain which is suggested as a measurement for the risk to get DAI. The results clearly show the importance of testing a helmet in oblique impacts. Comparing a pure vertical impact with a 45 degree oblique impact with the same initial impact energy shows that the strain in the central parts of the brain is increased with a factor of 6. It is therefore suggested that a future helmet impact standard should include a rotational component so that the helmet is designed for both radial and tangential forces. Such a test method, an oblique impact test, was used to compare two different helmet designs. One helmet was manufactured with the shell glued to the liner and one helmet was designed with a low friction layer between the shell and the liner (MIPS). It was shown that the strain in the FE model of the human head was reduced be 27% comparing the MIPS helmet to the glued helmet design.

    Download full text (pdf)
    fulltext
  • 7.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Aare, Magnus
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Kleiven, Svein
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Reduced risk for DAI by use of a new safety helmet2003Conference paper (Refereed)
    Abstract [en]

    Accidental impacts to the human head are often a combination of translational and rotational accelerations. The most frequent severe brain injuries from accidents are diffuse axonal injury (DAI) and subdural hematoma that both are reported to arise from rotational violence to the head. Most helmet standards used today do only take the translational accelerations into account. It is therefore suggested that an oblique impact test that measures both translational and rotational accelerations should be a complement to the helmet standards used today. This study investigates the potential to reduce the risk for DAI by improving the helmet design by use of an oblique helmet impact test rig. The method used is a detailed finite element (FE) model of the human head. The FE model is used to measure the maximum principal strain in the brain which is suggested as a measurement for the risk to get DAI. The results clearly show the importance of testing a helmet in oblique impacts. Comparing a pure vertical impact with a 45 degree oblique impact with the same initial impact energy shows that the strain in the central parts of the brain is increased with a factor of 6. It is therefore suggested that a future helmet impact standard should include a rotational component so that the helmet is designed for both radial and tangential forces. Such a test method, an oblique impact test, was used to compare two different helmet designs. One helmet was manufactured with the shell glued to the liner and one helmet was designed with a low friction layer between the shell and the liner (MIPS). It was shown that the strain in the FE model of the human head was reduced be 27% comparing the MIPS helmet to the glued helmet design.

    Download full text (pdf)
    fulltext
  • 8.
    Halldin, Peter
    et al.
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Brolin, Karin
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Hedenstierna, Sofia
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Aare, Magnus
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    von Holst, Hans
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Finite element analysis of the effects of head-supported mass on neck responses: Complete phase one report, United states army european research office of the U.S army2004Report (Refereed)
  • 9.
    Halldin, Peter
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Brolin, Karin
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Hedenstierna, Sofia
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Aare, Magnus
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Finite element analysis of the effects of head-supported mass on neck responses: Complete phase two report, United states army european research office of the U.S. army2005Report (Refereed)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf