Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Anderson, Mattias
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Amine Transaminases in Multi-Step One-Pot Reactions2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Amine transaminases are enzymes that catalyze the mild and selective formation of primary amines, which are useful building blocks for biologically active compounds and natural products. In order to make the production of these kinds of compounds more efficient from both a practical and an environmental point of view, amine transaminases were incorporated into multi-step one-pot reactions. With this kind of methodology there is no need for isolation of intermediates, and thus unnecessary work-up steps can be omitted and formation of waste is prevented. Amine transaminases were successfully combined with other enzymes for multi-step synthesis of valuable products: With ketoreductases all four diastereomers of a 1,3-amino alcohol could be obtained, and the use of a lipase allowed for the synthesis of natural products in the form of capsaicinoids. Amine transaminases were also successfully combined with metal catalysts based on palladium or copper. This methodology allowed for the amination of alcohols and the synthesis of chiral amines such as the pharmaceutical compound Rivastigmine. These examples show that the use of amine transaminases in multi-step one-pot reactions is possible, and hopefully this concept can be further developed and applied to make industrial processes more sustainable and efficient in the future.

  • 2.
    Anderson, Mattias
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Afewerki, Samson
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Córdova, Armando
    Chemoenzymatic amination of alcohols by combining oxidation catalysts with transaminases in one potManuscript (preprint) (Other academic)
    Abstract [en]

    Chemoenzymatic methods for the amination of alcohols have been developed. The reactions were performed in a one-pot two-step fashion, where the alcohol starting material was first oxidized to the corresponding carbonyl compound and then subsequently converted to the amine product with an enzymatic system based on an amine transaminase. The enzyme system was able to operate in a water/organic solvent two-phase system in the presence of either a heterogeneous palladium(0) catalyst or a homogeneous copper(I) catalyst. High conversions to the product amines were achieved for a range of substituted benzyl alcohols and similar compounds, but unfortunately the use of aliphatic alcohols resulted in lower conversions and secondary alcohols could not be converted to the corresponding amines with this methodology.

  • 3.
    Anderson, Mattias
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Afewerki, Samson
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Cõrdova, Armando
    Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot2014In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 356, no 9, p. 2113-2118Article in journal (Refereed)
    Abstract [en]

    The total synthesis of capsaicin analogues was performed in one pot, starting from compounds that can be derived from lignin. Heterogeneous palladium nanoparticles were used to oxidise alcohols to aldehydes, which were further converted to amines by an enzyme cascade system, including an amine transaminase. It was shown that the palladium catalyst and the enzyme cascade system could be successfully combined in the same pot for conversion of alcohols to amines without any purification of intermediates. The intermediate vanillyl-amine, prepared with the enzyme cascade system, could be further converted to capsaicin analogues without any purification using either fatty acids and a lipase, or Schotten-Baumann conditions, in the same pot. An aldol compound (a simple lignin model) could also be used as starting material for the synthesis of capsaicin analogues. Using l-alanine as organocatalyst, vanillin could be obtained by a retro-aldol reaction. This could be combined with the enzyme cascade system to convert the aldol compound to vanillylamine in a one-step one-pot reaction.

  • 4. Córdova, Armando
    et al.
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Anderson, Mattias
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Afewerki, Samson
    Efficient Synthesis Of Amines And Amides From Alcohols And Aldehydes By Using Cascade Catalysis2015Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    The present invention relates generally to an eco-friendly methodology for the conversion of alcohols and aldehydes to amines and amides using an integrated enzyme cascade system with metal-and organocatalysis. More specifically, the present invention relates to synthesis of capsaicinoids starting from vanillin alcohol and using a combination of an enzyme cascade system and catalysts. Furthermore, the method also relates to synthesis of capsaicinoids derivatives starting from vanillin alcohol derivatives and using a combination of an enzyme cascade system and catalysts.

  • 5. Kohls, Hannes
    et al.
    Anderson, Mattias
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Dickerhoff, Jonathan
    Weisz, Klaus
    Cordova, Armando
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Brundiek, Henrike
    Bornscheuer, Uwe T.
    Hoehne, Matthias
    Selective Access to All Four Diastereomers of a 1,3-Amino Alcohol by Combination of a Keto Reductase- and an Amine Transaminase-Catalysed Reaction2015In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 357, no 8, p. 1808-1814Article in journal (Refereed)
    Abstract [en]

    The biocatalytic synthesis of chiral amines has become a valuable addition to the chemists' tool-box. However, the efficient asymmetric synthesis of functionalised amines bearing more than one stereocentre, such as 1,3-amino alcohols, remains challenging. By employing a keto reductase (KRED) and two enantiocomplementary amine transaminases (ATA), we developed a biocatalytic route towards all four diastereomers of 4-amino-1-phenylpentane-2-ol as a representative molecule bearing the 1,3-amino alcohol functionality. Starting from a racemic hydroxy ketone, a kinetic resolution using an (S)-selective KRED provided optically active hydroxy ketone (86% ee) and the corresponding diketone. Further transamination of the hydroxy ketone was performed by either an (R)- or an (S)-selective ATA, yielding the (2R,4R)- and (2R,4S)-1,3-amino alcohol diastereomers. The remaining two diastereomers were accessible in two subsequent asymmetric steps: the diketone was reduced regio- and enantioselectively by the same KRED, which yielded the (S)-configured hydroxy ketone. Eventually, the subsequent transamination of the crude product with (R)- and (S)-selective ATAs yielded the remaining (2S,4R)and (2S,4S)-diastereomers, respectively.

  • 6.
    Palo-Nieto, Carlos
    et al.
    Mid Sweden University.
    Afewerki, Samson
    Anderson, Mattias
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Tai, Cheuk-Wai
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Córdova, Armando
    Integrated Heterogeneous Metal/Enzymatic Multiple Relay Catalysis for Eco-Friendly and Asymmetric Synthesis2016In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 6, p. 3932-3940Article in journal (Refereed)
    Abstract [en]

    Organic synthesis is in general performed using stepwise transformations where isolation and purification of key intermediates is often required prior to further reactions. Herein we disclose the concept of integrated heterogeneous metal/enzymatic multiple relay catalysis for eco-friendly and asymmetric synthesis of valuable molecules (e.g., amines and amides) in one-pot using a combination of heterogeneous metal and enzyme catalysts. Here reagents, catalysts, and different conditions can be introduced throughout the one-pot procedure involving multistep catalytic tandem operations. Several novel cocatalytic relay sequences (reductive amination/amidation, aerobic oxidation/reductive amination/amidation, reductive amination/kinetic resolution and reductive amination/dynamic kinetic resolution) were developed. They were next applied to the direct synthesis of various biologically and optically active amines or amides in one-pot from simple aldehydes, ketones, or alcohols, respectively.

  • 7. Scheidt, Thomas
    et al.
    Land, Henrik
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Anderson, Mattias
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Chen, Yujie
    Berglund, Per
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Yi, Dong
    Fessner, Wolf-Dieter
    Fluorescence-Based Kinetic Assay for High-Throughput Discovery and Engineering of Stereoselective omega-Transaminases2015In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 357, no 8, p. 1721-1731Article in journal (Refereed)
    Abstract [en]

    omega-Transaminases are a valuable class of enzymes for the production of chiral amines with either (R)- or (S)-configuration in high optical purity and 100% yield by the biocatalytic reductive amination of prochiral ketones. A versatile new assay was developed to quantify omega-transaminase activity for the kinetic characterization and enantioselectivity typing of novel or engineered enzymes based on the conversion of 1-(6-methoxynaphth-2-yl)alkylamines. The associated release of the acetonaphthone product can be monitored by the development of its bright fluorescence at 450 nm with very high sensitivity and selectivity. The assay principle can be used to quantify omega-transaminase catalysis over a very broad range of enzyme activity. Because of its simplicity and low substrate consumption in microtiter plate format the assay seems suitable for liquid screening campaigns with large library sizes in the directed evolution of optimized transaminases. For assay substrates that incorporate structural variations, an efficient modular synthetic route was developed. This includes racemate resolution by lipase-catalyzed transacylation to furnish enantiomerically pure (R)and (S)-configured amines. The latter are instrumental for the rapid enantioselectivity typing of omega-transaminases. This method was used to characterize two novel (S)-selective taurine-pyruvate transaminases of the subtype 6a from thermophilic Geobacillus thermodenitrificans and G. thermoleovorans.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf