Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Antoni, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hed, Yvonne
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nordberg, Axel
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Nyström, Daniel
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Bifunctional Dendrimers: From Robust Synthesis and Accelerated One-Pot Postfunctionalization Strategy to Potential Applications2009In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 48, no 12, p. 2126-2130Article in journal (Refereed)
  • 2.
    Asplund, Maria
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Thaning, Elin
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Lundberg, J.
    Sandberg-Nordqvist, A. C.
    Kostyszyn, B.
    Inganas, O.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering (Closed 20130701).
    Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes2009Article in journal (Refereed)
    Abstract [en]

    Electrodes coated with the conducting polymer poly(3,4-ethylene dioxythiophene) (PEDOT) possess attractive electrochemical properties for stimulation or recording in the nervous system. Biomolecules, added as counter ions in electropolymerization, could further improve the biomaterial properties, eliminating the need for surfactant counter ions in the process. Such PEDOT/biomolecular composites, using heparin or hyaluronic acid, have previously been investigated electrochemically. In the present study, their biocompatibility is evaluated. An agarose overlay assay using L929 fibroblasts, and elution and direct contact tests on human neuroblastoma SH-SY5Y cells are applied to investigate cytotoxicity in vitro. PEDOT: heparin was further evaluated in vivo through polymer-coated implants in rodent cortex. No cytotoxic response was seen to any of the PEDOT materials tested. The examination of cortical tissue exposed to polymer-coated implants showed extensive glial scarring irrespective of implant material (Pt:polymer or Pt). However, quantification of immunological response, through distance measurements from implant site to closest neuron and counting of ED1+ cell density around implant, was comparable to those of platinum controls. These results indicate that PEDOT: heparin surfaces were non-cytotoxic and show no marked difference in immunological response in cortical tissue compared to pure platinum controls.

  • 3.
    Kleiven, Svein
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    On the consequences of head size following impact to the human head - Reply2006In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 39, no 2, p. 385-387Article in journal (Refereed)
  • 4.
    Nordberg, Axel
    et al.
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Antoni, Per
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Montanez, Maria I.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    von Holst, Hans
    KTH, School of Technology and Health (STH), Neuronic Engineering.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Highly Adhesive Phenolic Compounds as Interfacial Primers for Bone Fracture Fixations2010In: ACS APPLIED MATERIALS & INTERFACES, ISSN 1944-8244, Vol. 2, no 3, p. 654-657Article in journal (Refereed)
    Abstract [en]

    Bone fractures are today scabilized with screws and metal plates. More complicated Fractures require alternative treatments that exclude harsh surgical conditions. By adapting the benign and UV initiated thiol-ene reaction, we efficiently fabricated triazine-based, fiber-reinforced adhesive patches within 2 s. To enhance their bone adhesion properties, we found that a pre-treatment step of bone surfaces with phenolic dopamine and poly(parahydroxystyrene) compounds was successful. The latter display the greatest E-module of 3.4 MPa in shear strength. All patches exhibited low cytotoxicity and can therefore find potential use in future treatments of bone fractures.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf