Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andrén, Oliver
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Exploring bis-MPA Based Dendritic Structures in Biomedicine2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the last decades there has been significant advances in polymer chemistry. New coupling chemistries, polymerization techniques and accelerated approaches enable researches to push the limits of structural control. One outcome of such development is the field of linear dendritic (LD) and dendritic linear dendritic (DLD) hybrid materials, drawing benefit from both linear and dendritic material properties. LD-hybrids with their high density of functional groups and customizability offer much promise for use in biological applications. This thesis deals with the potential use of sophisticated LD-hybrid materials focusing on the field of biomedicine and biomedical applications. The linear component is manly poly(ethylene glycol) (PEG) while the dendritic part consists of 2,2-Bis(hydroxymethyl)propionic (bis-MPA) building blocks.

    Initially a family of unsymmetrical LD amphiphiles was constructed and evaluated as carriers for drug delivery of chemotherapeutics. Through self-assembly driven by their amphiphilic nature nanocarriers (NC) were constructed with a hydrophobic core and hydrophilic corona. NC were found to enhance the effect of conventional therapeutics by relocating the drug from just the nucleus to the mitochondria among other organelles. Their versatile nature allowed for dual loading of a combination of chemotherapeutics and circumvented the resistance mechanism of resistant cancer cells.

    Dendrimers containing a disulfide in the backbone were also constructed, these enabled the selective fragmentation of the dendrimer by reduction to small molecular thiols. The fragments were also envisioned to disrupt the delicate thiol-disulfide balance intracellularly causing reactive oxygen species (ROS). Dendrimers were elaborated by conjugation to linear PEG creating LD-hybrids and evaluated in vitro and where found to cause high degree of ROS in cancerous cells.

    Thiol functional polymers were created, including linear polymers, dendrimers and DLD-hybrids. The DLD-hybrids were utilized as hydrogels through two efficient chemistries relying on the versatility of the thiol. By varying the generation of the LD-hybrid and the cross-linking chemistry the modulus could be tuned.

    Amine functional LD-hybrids were constructed utilizing the amino acid alanine. Scaffolds were utilized as antimicrobial hydrogels for prophylaxis during surgical intervention. LD-hybrids were initially evaluated in planktonic mode, and were found to have broad spectrum effect and were highly effective against resistant bacteria. Gelation was studied relying on N-hydroxysuccinimide (NHS) esters as cross-linkers, enabling instantaneous gelation under biological conditions. The gels moduli could be varied to match various tissues including stromal and muscle. The effect of the antimicrobial coatings was investigated with promising results both in vitro and in vivo.

    Finally, more industrially applicable hyperbranched LD-hybrids were constructed. The synthetic strategy relied on a convenient pseudo one-pot approach using Fisher esterification along with sequential monomer addition. Materials were found to have properties and characteristics similar to those of perfect dendritic LD-hybrids. And the scaffolds were evaluated in a range of applications such as hydrogels and isopourous films with promising results.

  • 2.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Fernandes, Aristi P.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Heterogeneous Rupturing Dendrimers2017In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126Article in journal (Refereed)
    Abstract [en]

    Utilizing macromolecular scaffolds as templates for the production of small molecules that are distinctively different from the original monomer feedstock has many potential applications. Herein, as a proof-of-concept, a family of dendrimers displaying internally queued disulfide bridges were synthesized and exploited as flawless macromolecular templates that selectively rupture into a set of monomeric mercaptans. Disassembly was accomplished in a reducing environment, using DTT as an external stimulus, and the thiol constituents were successfully isolated. Their composition was dictated by three dendritic regions, i.e., (i) the symmetrical trithiol of the core (C3), (ii) the interior-asymmetric trithiols (CD2), and (iii) the periphery-asymmetric monothiols (DB2), in which B functionality is of an orthogonal nature. Taking into account the steady state between disulfides and thiols in all living cells, the collapse of the dendrimers to a multitude of smaller thiols was intracellularly assessed as a means to disrupt the balance of reactive oxygen species (ROS) often elevated in cancer cells. Indeed, the fragmentation induced a significant increase of ROS in human lung carcinoma A549 cells. These findings can potentially alter the perception of dendrimers being limited to carriers to being prodrugs for intracellular delivery of ROS with the potential to fight cancer.

  • 3.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Håkansson, Joakim
    Bogestål, Yalda
    Caous, Josefin S.
    Blom, Kristina
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andersson, Therese
    Pedersen, Emma
    Björn, Camilla
    Löwenhielm, Peter
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings2019In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659, Vol. 8, no 5Article in journal (Refereed)
    Abstract [en]

    Abstract A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged ?-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G? = 0.5?8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.

  • 4.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Walter, Marie V.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Yang, Ting
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Multifunctional Poly(ethylene glycol): Synthesis, Characterization, and Potential Applications of Dendritic-Linear-Dendritic Block Copolymer Hybrids2013In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 46, no 10, p. 3726-3736Article in journal (Refereed)
    Abstract [en]

    Emerging dendritic-linear-dendritic (DLD) hybrids that possess synergetic properties of linear and highly functional branched dendritic polymers are becoming important macromolecular scaffolds in fields ranging from biomedicine to nanotechnology. By exploiting pseudo-one-step polycondensation reactions, a facile and scalable synthetic methodology for the construction of highly functional DLDs has been developed. A library of three sets of DLDs exhibiting a hydrophilic linear PEG core with covalently attached hyperbranched bis-MPA blocks was synthesized up to the seventh generation with 256 reactive peripheral hydroxyl groups. The degree of branching for the hybrids was found between 0.40 and 0.59 with dispersities ranging from 1.03 to 1.88. The introduction of hyperbranched components resulted in control over or even full disruption of the crystallinity of the PEG. Postfunctionalizations of the peripheral hydroxyl groups with azides, allyls, and ATRP initiators yielded reactive intermediates. These intermediates were successfully assessed through UV-initiated thiol-ene coupling reactions for the synthesis of charged hybrids. ATRP of styrene from the pheriphery afforded amphiphilic macromolecules. Finally, their scaffolding capacity was evaluated for the fabrication of 3D networks, i.e, novel dendritic hydrogels and highly ordered breath figures.

  • 5.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Lundberg, Pontus
    Hawker, Craig J.
    Nyström, Andreas M.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Therapeutic Nanocarriers via Cholesterol Directed Self-Assembly of Well-Defined Linear-Dendritic Polymeric Amphiphiles2017In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, no 9, p. 3891-3898Article in journal (Refereed)
    Abstract [en]

    A novel platform of fluorescently labeled nanocarriers (NCs) is herein proposed based on amphiphilic linear-dendritic polymeric hybrids. These sophisticated polymers were synthesized with a high degree of structural control at a macro-molecular level, displayed hydrophobic cholesterol compartments as chain-terminus groups of the dendritic block and hydrophilic bifunctional linear poly(ethylene glycol) (PEG) block. Spherical supramolecular assemblies with therapeutically relevant properties were successfully achieved including (i) sizes in the region of 100 to 200 nm; (ii) narrow dispersity profile with values close to 0.12; and (iii) self-assembly down to nanomolar concentrations. The modular nature of the NCs permitted the encapsulation of single or dual anticancer drugs and in parallel provide intracellular fluorescent traceability. As polymer therapeutics, the NCs were proven to penetrate the cancerous cell membranes and deliver the cargo of drugs into the nuclei as well as the cytoplasm and mitochondria. The dual drug delivery of both doxorubicin (DOX) and triptolide substantially enhanced the therapeutic efficacy with a 63% significant increase against resistant breast cancer cells when compared to free DOX.

  • 6.
    Andrén, Oliver
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Daniel
    Håkansson, Joakim
    Caous, Josefin
    Zhang, Yuning
    Anderson, Therese
    Pedersen, Emma
    Björn, Camilla
    Löwenhielm, Peter
    Malkoch, Michael
    Linear-Dendritic Polyesters as Antimicrobial HydrogelsManuscript (preprint) (Other academic)
  • 7.
    Andrén, Oliver
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Facile thiolation of hydroxyl functional polymers2017In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 8, no 34, p. 4996-5001Article in journal (Refereed)
    Abstract [en]

    Sulfur is an important component in many biological systems. In the hands of an organic chemist it can provide an ample handle for a myriad of robust reactions including thiol-ene click chemistry. However, in polymer chemistry the thiol functionality is rarely attributed to the macromolecule due to unatainable synthetic protocols. Herein, we provide a simple and robust strategy to produce thiol-functional polymers. The chemistry capitalizes on an unsymmetrical disulfide that straightforwardly converts hydroxyl functional polymers to their thiolated counterpart. Finally, PEG hydrogels, using both thiol-ene and Michael addition, is used to showcase the possibilities presented by thiol functional polymers.

  • 8. Auty, Sam E. R.
    et al.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hern, Faye Y.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Rannard, Steven P.
    One-pot' sequential deprotection/functionalisation of linear-dendritic hybrid polymers using a xanthate mediated thiol/Michael addition2015In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 6, no 4, p. 573-582Article in journal (Refereed)
    Abstract [en]

    Thiol-Michael addition chemistry is a powerful tool for the preparation of functional materials. In this first report of xanthate-functional linear-dendritic polymer hybrids, the preparation of four generations of xanthate-functionalised dendron atom transfer radical polymerisation macroinitiators is described using an orthogonal chemical strategy. The controlled polymerisation of tertiary butyl methacrylate is demonstrated to high conversion and without interference from the xanthate surface groups. Modification of the peripheral xanthate groups of dendrons at the hybrid polymer chain-end has been studied using a one-pot deprotection/functionalisation strategy and a range of commercially available and bespoke acrylate monomers to form complex polymer architectures from feedstock polymers, differing in the number of modified end groups and the surface chemistry of the dendron chain end.

  • 9. Auty, Sam E. R.
    et al.
    Andrén, Oliver
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Rannard, Steven P.
    The first peripherally masked thiol dendrimers: a facile and highly efficient functionalization strategy of polyester dendrimers via one-pot xanthate deprotection/thiol-acrylate Michael addition reactions2014In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 50, no 50, p. 6574-6577Article in journal (Refereed)
    Abstract [en]

    Introducing multiple reactive functional groups at the periphery of dendrimer materials presents considerable challenges if the functionality is able to self-react. An efficient and facile approach to introducing masked thiols at the surface of polyester dendrimers is presented. One-pot, deprotection/thiol-acrylate Michael addition from the xanthate-functional dendritic substrates (generation zero to two) has been achieved for the first time, with high efficiency demonstrated using three acrylates of varying chemistry and avoiding disulfide formation.

  • 10.
    Hed, Yvonne
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zhang, Yuning
    Andrén, Olver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zeng, Xianghui
    Nyström, Andreas M.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Side-by-side comparison of dendritic-linear hybrids and their hyperbranched analogs as micellar carriers of chemotherapeutics2013In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 51, no 19, p. 3992-3996Article in journal (Refereed)
    Abstract [en]

    Amphiphilic block copolymers are successfully synthesized possessing a hydrophobic dendritic component based on the bis-MPA monomer and a hydrophilic linear polyethylene glycol (PEG) component. The hybrids were either conjured in small scale using robust click reactions between perfect dendrons and linear PEG or multigram polycondensation of hyperbranched blocks from PEG. In all cases, the amphiphiles were assembled to micelles, were found nontoxic and successfully loaded with the chemotherapeutic doxorubicin.

  • 11. Hern, Faye Y.
    et al.
    Auty, Sam E. R.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Rannard, Steve P.
    Model studies of the sequential and simultaneous statistical modification of dendritic functional groups and their implications within complex polymer architecture synthesis2017In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 8, no 10, p. 1644-1653Article in journal (Refereed)
    Abstract [en]

    Post-synthesis modification of polymers is a synthetically appealing approach to generate a range of samples from a single, well-characterised starting material. When partial or mixed-functionalisation is sought, an inevitable statistical distribution of modification outcomes will lead to considerable variation of chemical structures within the final sample. Here we have comprehensively investigated the postsynthesis sequential/partial and simultaneous mixed modification of xanthate-functional ideal dendrons and used this data to consider the implications for the more complex linear-dendritic hybrids and hyper-branched- polydendron analogues. Although H-1 NMR confirmed the potential to direct the reactions, it was clear from MALDI-TOF studies that very little of the actual targeted structures were generated in the statistical reactions.

  • 12.
    Hult, Daniel
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Garcia-Gallego, Sandra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Andrén, Oliver
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Degradable High Tg Sugar Derived Polycarbonates from Isosorbide and Dihydroxyacetone2018In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 9, no 17, p. 2238-2246Article in journal (Refereed)
    Abstract [en]

    Polycarbonates from isosorbide and dihydroxyacetone (DHA) have been synthesised using organocatalytic step-growth polymerization of their corresponding diols and bis-carbonylimidazolides monomers. By choice of feed ratio and monomer activation, either isosorbide or ketal protected DHA, random and alternating poly(Iso-co-DHA) carbonates have been formed. Thermal properties by DSC and TGA were herein strongly correlated to monomer composition. Dilution studies using 1H-NMR of a model compound DHA-diethyl carbonate in acetonitrile and deuterated water highlighted the influence of α-substituents on the keto/hydrate equilibrium of DHA. Further kinetics studies of in the pH* range of 4.7 to 9.6 serve to show the hydrolytic pH-profile of DHA-carbonates. The Hydrolytic degradation of deprotected polymer pellets show an increased degradation with increasing DHA content. Pellets with a random or alternating configuration show different characteristics in terms of mass loss and molecular weight loss profile over time.

  • 13. Kikionis, Stefanos
    et al.
    Ioannou, Efstathia
    Andrén, Oliver C. J.
    Chronakis, Ioannis S.
    Fahmi, Amir
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Toskas, Georgios
    Roussis, Vassilios
    Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids2018In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 135, no 10, article id 45949Article in journal (Refereed)
    Abstract [en]

    Dendritic-linear-dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2-bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth-noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their bio-compatibility, biodegradability, multifunctionality, and advanced structural architecture.

  • 14.
    Lundberg, Pontus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Daehne, Bernd
    Andrén, Oliver
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Laurin, Richard
    Watermann, Burkhard
    Lundin, Claes
    Johansson, Mats K. G.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Hult, Anders
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Poly(ethylene glycol)-based thiol-ene hydrogels evaluated for their potential as antifouling coatings: Field studies and mechanical propertiesArticle in journal (Other academic)
  • 15.
    Martin-Serrano Ortiz, Angela
    et al.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Stenström, Patrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Torres, Maria J.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Montanez, Maria I.
    IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Res Lab, Plaza Hosp Civil, Malaga 29009, Spain.;IBIMA Reg Univ Hosp Malaga UMA, Hosp Civil, Allergy Unit, Plaza Hosp Civil, Malaga 29009, Spain.;BIONAND Andalusian Ctr Nanomed & Biotechnol, Parque Tecnol Andalucia, Malaga 29590, Spain..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Design of multivalent fluorescent dendritic probes for site-specific labeling of biomolecules2018In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 56, no 15, p. 1609-1616Article in journal (Refereed)
    Abstract [en]

    Herein, the synthesis and characterization of orthogonal dendrons decorated with multiple units of fluorescent and a chemoselective group at a focal point, followed by specific antibody labeling, is presented. Fluorescence results confirm the applicability of the fluorescent probes for biomolecule labeling and fluorescent signal amplification.

  • 16.
    Mongkhontreerat, Surinthra
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Boujemaoui, Assya
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Dendritic hydrogels: From exploring various crosslinking chemistries to introducing functions and naturally abundant resources2015In: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 53, no 21, p. 2431-2439Article in journal (Refereed)
    Abstract [en]

    Dendritic hydrogels from dendritic-linear-dendritic (DLD) block copolymers based on PEG and bis-MPA dendrons were constructed via UV-initiated thiol-ene, thiol-yne, CuAAC, and amine-NHS crosslinking chemistries. Stoichiometric ratio manipulations, prior to film formation, resulted in functional hydrogels with tuneable compressive moduli. The highest gel fractions for all networks were obtained at off-stoichiometric ratios with surplus of DLDs. Finally, sustainable networks were fabricated by amalgamating DLD, naturally abundant cellulose nanocrystal, and protein-based bovine serum albumin.

  • 17.
    Mongkhontreerat, Surinthra
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Walter, Marie V.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Cai, Yanling
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Beyond state of the art honeycomb membranes: High performance ordered arrays from multi-programmable linear-dendritic block copolymers2015In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 25, no 30Article in journal (Refereed)
    Abstract [en]

    A new generation of honeycomb membranes is herein described from a novel library of multipurpose linear-dendritic block copolymers. These are accomplished by combining atom transfer radical polymerization together with dendrimer chemistry and click reactions. The resulted amorphous block copolymers, with T-g between 30 and 40 degrees C, display three important functions, i.e., pore generating aromatic groups, crosslinking azides, and multiple dendritic functional groups. All block copolymers enable the successful fabrication of honeycomb membranes through the facile breath figure method. The peripheral dendritic functionality is found to influence the porous morphologies from closed pored structure with pore size of 1.12 mu m(2) to open pore structure with pore size 10.26 mu m(2). Facile UV crosslinking of the azides yields membranes with highly durable structural integrity. Upon crosslinking, the pH and thermal stability are extended beyond the noncrosslinked membranes in which the porous integrity is maintained up to 400 degrees C and pH 1-14. Taking into account the straightforward and cost-efficient strategy to generate ordered, functional, and structurally stable honeycomb membranes on various solid substrates, it is apparent that these multipurpose block copolymers may unlock future applications including use as molds for soft lithography.

  • 18.
    Nordstrom, Randi
    et al.
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden..
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Singh, Shalini
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Davoudi, Mina
    Lund Univ, Dept Clin Sci, Div Dermatol & Venereol, SE-22184 Lund, Sweden..
    Schmidtchen, Artur
    Lund Univ, Dept Clin Sci, Div Dermatol & Venereol, SE-22184 Lund, Sweden.;Univ Copenhagen, Bispebjerg Hosp, Wound Healing Ctr, Dept Biomed Sci, DK-2200 Copenhagen, Denmark..
    Malmsten, Martin
    Uppsala Univ, Dept Pharm, SE-75123 Uppsala, Sweden.;Univ Copenhagen, Dept Pharm, DK-2100 Copenhagen, Denmark..
    Degradable dendritic nanogels as carriers for antimicrobial peptides2019In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 554, p. 592-602Article in journal (Refereed)
    Abstract [en]

    In the present study, we investigate degradable anionic dendritic nanogels (DNG) as carriers for antimicrobial peptides (AMPS). In such systems, the dendritic part contains carboxylic acid-based anionic binding sites for cationic AMPs, whereas linear poly(ethylene glycol) (PEG) chains form a shell for promotion of biological stealth. In order to clarify factors influencing membrane interactions of such systems, we here address effects of nanogel charge, cross-linking, and degradation on peptide loading/release, as well as consequences of these factors for lipid membrane interactions and antimicrobial effects. The DNGs were found to bind the AMPs LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW). For the smaller DPK-060 peptide, loading was found to increase with increasing nanogel charge density. For the larger LL-37, on the other hand, peptide loading was largely insensitive to nanogel charge density. In line with this, results on the secondary structure, as well as on the absence of stabilization from proteolytic degradation by the nanogels, show that the larger LL-37 is unable to enter into the interior of the nanogels. While 40-60% nanogel degradation occurred over 10 days, promoted at high ionic strength and lower cross-linking density/higher anionic charge content, peptide release at physiological ionic strength was substantially faster, and membrane destabilization not relying on nanogel degradation. Ellipsometry and liposome leakage experiments showed both free peptide and peptide/DNG complexes to cause membrane destabilization, indicated also by antimicrobial activities being comparable for nanogel-bound and free peptide. Finally, the DNGs were demonstrated to display low toxicity towards erythrocytes even at peptide concentrations of 100 mu M.

  • 19. Nordström, R.
    et al.
    Nyström, L.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Umerska, A.
    Davoudi, M.
    Schmidtchen, A.
    Malmsten, M.
    Membrane interactions of microgels as carriers of antimicrobial peptides2018In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 513, p. 141-150Article in journal (Refereed)
    Abstract [en]

    Microgels are interesting as potential delivery systems for antimicrobial peptides. In order to elucidate membrane interactions of such systems, we here investigate effects of microgel charge density on antimicrobial peptide loading and release, as well as consequences of this for membrane interactions and antimicrobial effects, using ellipsometry, circular dichroism spectroscopy, nanoparticle tracking analysis, dynamic light scattering and z-potential measurements. Anionic poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate considerable amounts of the cationic antimicrobial peptides LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) and DPK-060 (GKHKNKGKKNGKHNGWKWWW) and to protect incorporated peptides from degradation by infection-related proteases at high microgel charge density. As a result of their net negative z-potential also at high peptide loading, neither empty nor peptide-loaded microgels adsorb at supported bacteria-mimicking membranes. Instead, membrane disruption is mediated almost exclusively by peptide release. Mirroring this, antimicrobial effects against several clinically relevant bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa) were found to be promoted by factors facilitating peptide release, such as decreasing peptide length and decreasing microgel charge density. Microgels were further demonstrated to display low toxicity towards erythrocytes. Taken together, the results demonstrate some interesting opportunities for the use of microgels as delivery systems for antimicrobial peptides, but also highlight several key factors which need to be controlled for their successful use. 

  • 20.
    Nordström, Randi
    et al.
    Ms, Dept Pharm, Uppsala, Sweden..
    Nyström, Lina
    Uppsala Univ, Dept Pharm, Uppsala, Sweden..
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Umerska, Anita
    MINT Univ Angers, Angers, France..
    Davoudi, Mina
    Lund Univ, Dept Clin Sci, Lund, Sweden..
    Schmidtchen, Artur
    Lund Univ, Dept Clin Sci, Lund, Sweden..
    Malmsten, Martin
    Uppsala Univ, Dept Pharm, Uppsala, Sweden..
    Poly(acrylic acid) microgels as carriers for antimicrobial peptides2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 21.
    Olofsson, Kristina
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Recent Advances on Crosslinked Dendritic Networks2014In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 131, no 3, p. 39876-Article, review/survey (Refereed)
    Abstract [en]

    The branched architectures of dendritic polymers display a large number of end groups, and dendrimers have been extensively evaluated as scaffolds in a large array of research fields, including biomedicine and nanotechnology. From the number of potential applications that require advanced crosslinked films, dendritic macromolecules are attractive as scaffolds that deliver on promising crosslinked three-dimensional (3D) networks. This review briefly covers a description of the family of functional dendritic polymers, ranging from dendrimers and dendrons to hyperbranched polymers and dendritic linear hybrids. The review also contains a detailed report on proposed chemistries for the exploitation of dendritic materials as scaffolds in the field of advanced networks.

  • 22.
    Rozenbaum, Rene T.
    et al.
    Univ Groningen, Dept Biomed Engn, POB 196, NL-9700 AD Groningen, Netherlands.;Univ Med Ctr Groningen, POB 196, NL-9700 AD Groningen, Netherlands..
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    van der Mei, Henny C.
    Univ Groningen, Dept Biomed Engn, POB 196, NL-9700 AD Groningen, Netherlands.;Univ Med Ctr Groningen, POB 196, NL-9700 AD Groningen, Netherlands..
    Woudstra, Willem
    Univ Groningen, Dept Biomed Engn, POB 196, NL-9700 AD Groningen, Netherlands.;Univ Med Ctr Groningen, POB 196, NL-9700 AD Groningen, Netherlands..
    Busscher, Henk J.
    Univ Groningen, Dept Biomed Engn, POB 196, NL-9700 AD Groningen, Netherlands.;Univ Med Ctr Groningen, POB 196, NL-9700 AD Groningen, Netherlands..
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sharma, Prashant K.
    Univ Groningen, Dept Biomed Engn, POB 196, NL-9700 AD Groningen, Netherlands.;Univ Med Ctr Groningen, POB 196, NL-9700 AD Groningen, Netherlands..
    Penetration and Accumulation of Dendrons with Different Peripheral Composition in Pseudomonas aeruginosa Biofilms2019In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 19, no 7, p. 4327-4333Article in journal (Refereed)
    Abstract [en]

    Multidrug resistant bacterial infections threaten to become the number one cause of death by the year 2050. Development of antimicrobial dendritic polymers is considered promising as an alternative infection control strategy. For antimicrobial dendritic polymers to effectively kill bacteria residing in infectious biofilms, they have to penetrate and accumulate deep into biofilms. Biofilms are often recalcitrant to antimicrobial penetration and accumulation. Therefore, this work aims to determine the role of compact dendrons with different peripheral composition in their penetration into Pseudomonas aeruginosa biofilms. Red fluorescently labeled dendrons with pH-responsive NH3+ peripheral groups initially penetrated faster from a buffer suspension at pH 7.0 into the acidic environment of P. aeruginosa biofilms than dendrons with OH or COO- groups at their periphery. In addition, dendrons with NH3+ peripheral groups accumulated near the top of the biofilm due to electrostatic double-layer attraction with negatively charged biofilm components. However, accumulation of dendrons with OH and COO- peripheral groups was more evenly distributed across the depth of the biofilms than NH3+ composed dendrons and exceeded accumulation of NH3+ composed dendrons after 10 min of exposure. Unlike dendrons with NH3+ groups at their periphery, dendrons with OH or COO- peripheral groups, lacking strong electrostatic double-layer attraction with biofilm components, were largely washed-out during exposure to PBS without dendrons. Thus, penetration and accumulation of dendrons into biofilms is controlled by their peripheral composition through electrostatic double-layer interactions, which is an important finding for the further development of new antimicrobial or antimicrobial-carrying dendritic polymers.

  • 23.
    Stenström, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Fluoride-promoted esterification (FPE) chemistry: A robust route to Bis-MPA dendrons and their postfunctionalization2016In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 21, no 3, article id 366Article in journal (Refereed)
    Abstract [en]

    Bifunctional dendrons based on 2,2-bis(methylol)propionic acid (bis-MPA) are highly desirable scaffolds for biomedical applications. This is due to their flawless nature and large and exact number of functional groups as well as being biodegradable and biocompatible. Herein, we describe a facile divergent growth approach to their synthesis from monobenzylated tetraethylene glycol and post functionalization utilizing fluoride-promoted esterification (FPE) chemistry protocols. The scaffolds, presenting selectively deprotectable hydroxyls in the periphery and at the focal point, were isolated on a multigram scale with excellent purity up to the fourth generation dendron with a molecular weight of 2346 Da in seven reactions with a total yield of 50%. The third generation dendron was used as a model compound to demonstrate its functionalizability. Selective deprotection of the dendron's focal point was achieved with an outstanding yield of 94%, and biotin as well as azido functionalities were introduced to its focal point and periphery, respectively, through FPE chemistry. Bulky disperse red dyes were clicked through CuAAC to the dendron's azido groups, giving a biotinylated dendron with multivalent dyes with a molecular weight of 6252 Da in a total yield of 37% in five reactions with an average yield of 82% starting from the third generation focally and peripherally protected dendron. FPE chemistry proved to be a superb improvement over previous protocols towards bis-MPA dendrons as high purity and yields were obtained with less toxic solvents and greatly improved monomer utilization.

  • 24.
    Stenström, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hjorth, Erik
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Guette-Marquet, Simon
    Schultzberg, Marianne
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Synthesis and in Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties2017In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, no 12, p. 4323-4330Article in journal (Refereed)
    Abstract [en]

    Amine functional polymers, especially cationically charged, are interesting biomacromolecules for several reasons, including easy cell membrane entrance, their ability to escape endosomes through the proton sponge effect, spontaneous complexation and delivery of drugs and siRNA, and simple functionalization in aqueous solutions. Dendrimers, a subclass of precision polymers, are monodisperse and exhibit a large and exact number of peripheral end groups in relation to their size and have shown promise in drug delivery, biomedical imaging and as antiviral agents. In this work, hydroxyl functional dendrimers of generation 1 to 5 based on 2,2-bis(methylol)propionic acid (bis-MPA) were modified to bear 6 to 96 peripheral amino groups through esterification reactions with beta-alanine. All dendrimers were isolated in high yields and with remarkable monodispersity. This was successfully accomplished utilizing the present advantages of fluoride-promoted esterification (FPE) with imidazole-activated monomers. Straightforward postfunctionalization was conducted on a second generation amino functional dendrimer with tetraethylene glycol through NHS-amidation and carbonyl diimidazole (CDI) activation to full conversion with short reaction times. Fast biodegradation of the dendrimers through loss of peripheral beta-alanine groups was observed and generational- and dose-dependent cytotoxicity was evaluated with a set of cell lines. An increase. in neurotoxicity compared to hydroxyl-functional dendrimers was shown in neuronal cells, however, the dendrimers were slightly less neurotoxic than commercially available poly(amidoamine) dendrimers (PAMAMs). Additionally, their effect on bacteria was evaluated and the second generation dendrimer was found unique inhibiting the growth of Escherichia coli at physiological conditions while being nontoxic toward human cells. Finally, these results cement a robust and sustainable synthetic route to amino-functional polyester dendrimers with interesting chemical and biological properties.

  • 25.
    Walter, Marie V.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Andrén, Oliver C. J.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Thermally stable and functional honeycomb films from linear dendritic hybrids derived from HEMA and Bis-MPAManuscript (preprint) (Other academic)
  • 26.
    Zhang, Yuning
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andrén, Oliver C. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordström, R.
    Fan, Yanmiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmsten, M.
    Mongkhontreerat, S.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Off-Stoichiometric Thiol-Ene Chemistry to Dendritic Nanogel Therapeutics2019In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 29, no 18, article id 1806693Article in journal (Refereed)
    Abstract [en]

    A novel platform of dendritic nanogels is herein presented, capitalizing on the self-assembly of allyl-functional polyesters based on dendritic-linear-dendritic amphiphiles followed by simple cross-linking with complementary monomeric thiols via UV initiated off-stoichiometric thiol-ene chemistry. The facile approach enabled multigram creation of allyl reactive nanogel precursors, in the size range of 190–295 nm, being readily available for further modifications to display a number of core functionalities while maintaining the size distribution and characteristics of the master batch. The nanogels are evaluated as carriers of a spread of chemotherapeutics by customizing the core to accommodate each individual cargo. The resulting nanogels are biocompatible, displaying diffusion controlled release of cargo, maintained therapeutic efficacy, and decreased cargo toxic side effects. Finally, the nanogels are found to successfully deliver pharmaceuticals into a 3D pancreatic spheroids tumor model. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf