Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Formenti, Angelo
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Eliasson, Anders
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Ceramics.
    Fredriksson, Hasse
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
    On the dendritic growth and microsegregation in Ni-base superalloys IN718, IN625 and IN9392005In: High Temperature Materials and Processes, ISSN 0334-6455, E-ISSN 2191-0324, Vol. 24, no 4, p. 221-238Article in journal (Refereed)
    Abstract [en]

    Directional Solidification and Quenching (DSQ) has been used to analyse the solidification, segregation and precipitation behaviour of the Ni-base alloys IN718, IN625 and IN939. The microsegregation in the primary solidified gamma-phase was analysed by Energy Dispersive Spectroscopy (EDS) and were mainly found to be Nb for alloy IN718 and Ti for alloy IN939. The microsegregation behaviour were analysed by numerical back diffusion models and it was found that the diffusion rate in the samples was higher than expected from the theory. A suggested explanation was that this was an effect of the formation of lattice defects during the solidification process. The coarsening process that occurs during the further cooling of the samples is proved to be by the mechanism of back diffusion i.e. the smaller secondary dendrite arms grow together with the thicker ones into a plate.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf