Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cozzolino, Carlo A.
    et al.
    University of Sassari.
    Blomfeldt, Thomas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Piga, Antonio
    University of Sassari.
    Piergiovanni, Luciano
    Farris, Stefano
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Dye release behavior from polyvinyl alcohol films in a hydro-alcoholic medium: Influence of physicochemical heterogeneity2012In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 403, p. 45-53Article in journal (Refereed)
    Abstract [en]

    In this paper we investigated the release kinetics of a model drug-like compound (Coomassie brilliant blue) from polyvinyl alcohol (PVOH) films into a hydro-alcoholic solution as a function of the physicochemical properties of the polymer matrix. After 33 days of monitoring, the total amount released ranged from 10% for the high hydrolysis degree/low molecular weight PVOH films to 60% for the low hydrolysis degree/low molecular weight films. Mathematical modeling allowed for an estimation of the two diffusion coefficients (D 1 and D 2) that characterized the release profile of the dye from the films. The degree of hydrolysis dramatically affected both the morphology and the physical structure of the polymer network. A high hydroxyl group content was also associated with the shifting of second order and first order transitions toward higher temperatures, with a concurrent increase in crystallinity. Moreover, the higher the degree of hydrolysis, the higher the affinity of the polymer to the negatively charged molecule dye. Selection of the polymer matrix based on physicochemical criteria may help in achieving different release patterns, thereby representing the first step for the production of polymer systems with modulated release properties.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf