Please wait ... |

Refine search result

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22u1g3u2fe%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt488_recordPermLink",{id:"formSmash:upper:j_idt488:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt488_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt488_j_idt490",{id:"formSmash:upper:j_idt488:j_idt490",widgetVar:"widget_formSmash_upper_j_idt488_j_idt490",target:"formSmash:upper:j_idt488:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt506",{id:"formSmash:upper:j_idt506",widgetVar:"widget_formSmash_upper_j_idt506",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt506",e:"change",f:"formSmash",p:"formSmash:upper:j_idt506",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt517",{id:"formSmash:upper:j_idt517",widgetVar:"widget_formSmash_upper_j_idt517",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt517",e:"change",f:"formSmash",p:"formSmash:upper:j_idt517",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt527",{id:"formSmash:upper:j_idt527",widgetVar:"widget_formSmash_upper_j_idt527"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Response to "Comment on 'Force on a spinning sphere moving in a rarefied gas' and 'On the inverse Magnus effect in free molecular flow'" [Phys. Fluids 16, 3832 (2004)] Borg, K Iet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt594",{id:"formSmash:items:resultList:0:j_idt594",widgetVar:"widget_formSmash_items_resultList_0_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Soderholm, LarsKTH, Superseded Departments, Mechanics.Essen, HannoKTH, Superseded Departments, Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Response to "Comment on 'Force on a spinning sphere moving in a rarefied gas' and 'On the inverse Magnus effect in free molecular flow'" [Phys. Fluids 16, 3832 (2004)]2004In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 16, no 10, p. 3833-3833Article in journal (Other academic)2. Force on a spinning sphere moving in a rarefied gas Borg, K. I.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt594",{id:"formSmash:items:resultList:1:j_idt594",widgetVar:"widget_formSmash_items_resultList_1_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Söderholm, Lars H.KTH, Superseded Departments, Mechanics.Essén, HannoKTH, Superseded Departments, Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Force on a spinning sphere moving in a rarefied gas2003In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 15, no 3, p. 736-741Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:1:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_1_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The force acting on a spinning sphere moving in a rarefied gas is calculated. It is found to have three contributions with different directions. The transversal contribution is of opposite direction compared to the so-called Magnus force normally exerted on a sphere by a dense gas. It is given by F=-alpha(tau)xi2/3piR(3)mnomegaxv, where alpha(tau) is the accommodation coefficient of tangential momentum, R is the radius of the sphere, m is the mass of a gas molecule, n is the number density of the surrounding gas, omega is the angular velocity, and v is the velocity of the center of the sphere relative to the gas. The dimensionless factor xi is close to unity, but depends on omega and kappa, the heat conductivity of the body.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. Orbital effects of the Magnus force on a spinning spherical satellite in a rarefied atmosphere Borg, Karl I.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt594",{id:"formSmash:items:resultList:2:j_idt594",widgetVar:"widget_formSmash_items_resultList_2_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Söderholm, Lars H.KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Orbital effects of the Magnus force on a spinning spherical satellite in a rarefied atmosphere2008In: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 27, no 5, p. 623-631Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:2:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The effects of the Magnus force on a spinning sphere in a Keplerian orbit is investigated using perturbation theory. The result is that the plane of the orbit will rotate with the angular velocity - 1/4 alpha(tau)mn/rho(S)omega, where alpha(tau) is the accommodation coefficient of tangential momentum, m and It are the mass and number density of the surrounding gas, and where rho S and omega are the mean density and the angular velocity of the sphere. It is shown that under reasonable assumptions, for a spinning satellite in the Earth's atmosphere, this effect is small.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Thermophoretic motion of bodies with axial symmetry Borg, Karlet al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt594",{id:"formSmash:items:resultList:3:j_idt594",widgetVar:"widget_formSmash_items_resultList_3_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Söderholm, Lars H.KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Thermophoretic motion of bodies with axial symmetry2007In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 40, no 1, p. 148-155Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:3:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen number, Kn. The study is made in the limit where the typical length of the immersed body is small compared with the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general anti-parallel to the temperature gradient. It is also shown that the gas exerts a torque on the body, which in magnitude and direction depends on the body geometry. Equations of motion describing the body movement are derived. Stationary solutions are studied.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Nonlinear acoustics equations to third order - New stabilization of the Burnett equations Soderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt591",{id:"formSmash:items:resultList:4:j_idt591",widgetVar:"widget_formSmash_items_resultList_4_j_idt591",onLabel:"Soderholm, Lars H. ",offLabel:"Soderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nonlinear acoustics equations to third order - New stabilization of the Burnett equations2006In: Mathematical Modeling of Wave Phenomena / [ed] Nilsson, B; Fishman, L, MELVILLE, NY: AMER INST PHYSICS , 2006, Vol. 834, p. 214-221Conference paper (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:4:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_4_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For nonlinear acoustics for ultrahigh frequencies it is necessary to go beyond the Navier-Stokes equations. For a gas the next set of equations due to Burnett were shown by Bobylev to have an unphysical instability. The Burnett equations are here stabilized as a set of equations for the fluid dynamic variables rho, v, T, first in an approximation adequate for third order nonlinear acoustics and then in the general case.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. A higher order acoustic equation for the slightly viscous case Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt591",{id:"formSmash:items:resultList:5:j_idt591",widgetVar:"widget_formSmash_items_resultList_5_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Superseded Departments, Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A higher order acoustic equation for the slightly viscous case2001In: Acustica, ISSN 0001-7884, Vol. 87, no 1, p. 29-33Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:5:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Compressible flow of a Newtonian fluid is studied in the fully nonlinear approximation and to lowest order in the dissipation. Nonlinear contributions to dissipation are neglected. It is shown that entropy can then be eliminated. An initially vorticity free flow is shown to remain vorticity free. An acoustic equation is derived. If S = M-n, the equation obtained is correct to order M-n. M is the Mach number (the speed of the fluid divided by the local speed of sound). S is the Stokes number, (the kinematic viscosity divided by the product of the wavelength and the local speed of sound). For n = 1, the equation reduces to the Kuznetsov equation.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Consistent third order nonlinear acoustics Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt591",{id:"formSmash:items:resultList:6:j_idt591",widgetVar:"widget_formSmash_items_resultList_6_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Consistent third order nonlinear acoustics2008In: NONLINEAR ACOUSTICS FUNDAMENTALS AND APPLICATIONS / [ed] Enflo, BO; Hedberg, CM; Kari, L, 2008, Vol. 1022, p. 69-72Conference paper (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:6:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); For very high frequency ultrasound the Navier-Stokes equations are inadequate. The Navier-Stokes equations are first order in the mean free path in a gas. In this paper some sets of equations of second order are introduced and the nonlinear evolution of a sound wave is studied for one of these.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. Equilibrium temperature of a convex body in a free molecular shearing flow Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt591",{id:"formSmash:items:resultList:7:j_idt591",widgetVar:"widget_formSmash_items_resultList_7_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Superseded Departments, Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Equilibrium temperature of a convex body in a free molecular shearing flow2002In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, ISSN 1063-651X, E-ISSN 1095-3787, Vol. 66, no 3Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:7:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); It is shown that the equilibrium temperature T-w of a high conductivity axially symmetric convex body in a simply shearing gas of temperature T is given by T-w/T=1+(betaa/4)(p(xy)/p) sin(2)theta sin(2Phi), theta,Phi are polar angles of the axis of the body (z is the polar axis). a is a geometric shape factor of the body (which vanishes for a sphere) and beta takes the value 1 if only the lowest order Sonine term is retained. p is the pressure and p(xy) the viscous pressure. The body is assumed small compared to the mean free path, which is small compared to the length scale of the velocity field.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Hilbert Fluid Dynamics Equations Expressed in Chapman-Enskog Pressure Tensor and Heat Current Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt591",{id:"formSmash:items:resultList:8:j_idt591",widgetVar:"widget_formSmash_items_resultList_8_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hilbert Fluid Dynamics Equations Expressed in Chapman-Enskog Pressure Tensor and Heat Current2008In: Transport theory and statistical physics, ISSN 0041-1450, E-ISSN 1532-2424, Vol. 37, no 5-7, p. 520-534Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:8:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_8_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The connection between the Chapman-Enskog and Hilbert expansions is investigated in detail. In particular, the fluid dynamics equations of any order in the Hilbert expansion are given in terms of the pressure tensor and heat current of the Chapman-Enskog expansion.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. Hybrid Burnett equations Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt591",{id:"formSmash:items:resultList:9:j_idt591",widgetVar:"widget_formSmash_items_resultList_9_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hybrid Burnett equations: A new method of stabilizing2007In: Transport theory and statistical physics, ISSN 0041-1450, E-ISSN 1532-2424, Vol. 36, no 4-6, p. 495-512Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:9:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In the original work by Burnett, the pressure tensor and the heat current contain two time derivates. Those are commonly replaced by spatial derivatives using the equations to zero order in the Knudsen number. The resulting conventional Burnett equations were shown by Bobylev to be linearly unstable. In this paper it is shown that the original equations of Burnett have a singularity. A hybrid of the original and conventional equations is constructed and shown to be linearly stable. It contains two parameters, which have to be larger than or equal to some limit values. For any choice of the parameters, the equations agree with each other and with the Burnett equations to second order in Kn, that is, to the accuracy of the Burnett equations. For the simplest choice of parameters the hybrid equations have no third derivative of the temperature, but the inertia term contains second spatial derivatives. For stationary flow, when the term Kn(2) Ma(2) can be neglected, the only difference,from the conventional Burnett equations is the change of coefficients pi(2) -> pi(3), pi(3) -> pi(3).

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Nonlinear acoustics to second order in Knudsen number without unphysical instabilities Söderholm, Lars H PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt591",{id:"formSmash:items:resultList:10:j_idt591",widgetVar:"widget_formSmash_items_resultList_10_j_idt591",onLabel:"Söderholm, Lars H ",offLabel:"Söderholm, Lars H ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Nonlinear acoustics to second order in Knudsen number without unphysical instabilities2005In: Rarefied Gas Dynamics / [ed] Capitelli, M, MELVILLE: AMER INST PHYSICS , 2005, Vol. 762, p. 54-59Conference paper (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:10:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The Burnett equations are consistently reformulated as a linearly stable first order system. The equations are then applied to study the nonlinear evolution of a sound wave. The initially sinusoidal wave is nonlinearly distorted and a shock wave develops. The shock is gradually dissolved by dissipation and a sinusoidal wave of smaller and decaying amplitude emerges. The amplitude of this old age solution is compared with the classical results from the Burgers equation of nonlinear acoustics and systematic deviations are found.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. On the Relation between the Hilbert and Chapman-Enskog Expansions Söderholm, Lars H. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt591",{id:"formSmash:items:resultList:11:j_idt591",widgetVar:"widget_formSmash_items_resultList_11_j_idt591",onLabel:"Söderholm, Lars H. ",offLabel:"Söderholm, Lars H. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mechanics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); On the Relation between the Hilbert and Chapman-Enskog Expansions2009In: RAREFIED GAS DYNAMICS / [ed] Abe, T., 2009, Vol. 1084, p. 81-86Conference paper (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:11:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The connection between the Chapman-Enskog and Hilbert expansions is investigated in detail. In particular the fluid dynamics equations of any order in the Hilbert expansion are given in terms of the pressure tensor and heat current of the Chapman-Enskog expansion.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22u1g3u2fe%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt911_recordPermLink",{id:"formSmash:lower:j_idt911:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt911_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt911_j_idt913",{id:"formSmash:lower:j_idt911:j_idt913",widgetVar:"widget_formSmash_lower_j_idt911_j_idt913",target:"formSmash:lower:j_idt911:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt929",{id:"formSmash:lower:j_idt929",widgetVar:"widget_formSmash_lower_j_idt929",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt929",e:"change",f:"formSmash",p:"formSmash:lower:j_idt929",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt940",{id:"formSmash:lower:j_idt940",widgetVar:"widget_formSmash_lower_j_idt940",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt940",e:"change",f:"formSmash",p:"formSmash:lower:j_idt940",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt950",{id:"formSmash:lower:j_idt950",widgetVar:"widget_formSmash_lower_j_idt950"});});

- html
- text
- asciidoc
- rtf