Endre søk
Begrens søket
1 - 25 of 25
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Berglund, Lars A.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Ikkala, O.
    Walther, A.
    Bioinspired clay nanocomposites of very high clay content2012Inngår i: ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, European Conference on Composite Materials, ECCM , 2012Konferansepaper (Fagfellevurdert)
    Abstract [en]

    It is difficult to prepare clay nanocomposites of high volume fraction clay. Layer-by-layer methods have been successful, but are difficult to use in large-scale production. In the present study, papermaking techniques are used for fabrication of oriented clay platelet nanocomposites. Materials are characterized by TEM, SEM, XRD and mechanical and barrier properties are measured and fire retardance performance is demonstrated. High strength and stiffness is demonstrated and the potential for bionanocomposites is discussed, in particular with moisture durability in mind.

  • 2.
    Berglund, Lars
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Kochumalayil, Joby Jose
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Oxygen barrier for packaging applications2011Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention relates to composite material of xyloglucan and clay for use as a coating material. The invention also relates to a method of producing the coating.

  • 3.
    Bergström, Elina Mabasa
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Salmen, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Joby Kochumalayil, Jose
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Plasticized xyloglucan for improved toughness-Thermal and mechanical behaviour2012Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 87, nr 4, s. 2532-2537Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tamarind seed xyloglucan is an interesting polysaccharide of high molar mass with excellent thermomechanical properties. Several plasticizers were studied in order to facilitate thermal processing and improve toughness (work to fracture) of xyloglucan film materials: sorbitol, urea, glycerol and polyethylene oxide. Films of different compositions were cast and studied by thermogravimetric analysis (TGA), calorimetry (DSC), dynamic mechanical thermal analysis (DMA) and tensile tests. Results are analysed and discussed based on mechanisms and practical considerations. Highly favourable characteristics were found with XG/sorbitol combinations, and the thermomechanical properties motivate further work on this material system, for instance as a matrix in biocomposite materials.

  • 4.
    Carosio, Federico
    et al.
    Politecn Torino, Dipartimento Sci Applicata & Technol, Alessandria, Italy.;KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Kochumalayil, Joby
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Cuttica, Fabio
    Politecn Torino, Dipartimento Sci Applicata & Technol, Alessandria, Italy..
    Medina, Lilian
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Camino, Giovanni
    Politecn Torino, Dipartimento Sci Applicata & Technol, Alessandria, Italy..
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nanocellulose/clay thin films and foams: Biobased nanocomposites with superior flame retardant properties2016Inngår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 252Artikkel i tidsskrift (Annet vitenskapelig)
  • 5.
    Carosio, Federico
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Politecnico di Torino, Italy.
    Kochumalayil, Joby
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Fina, A.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Extreme Thermal Shielding Effects in Nanopaper Based on Multilayers of Aligned Clay Nanoplatelets in Cellulose Nanofiber Matrix2016Inngår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 3, nr 19, artikkel-id 1600551Artikkel i tidsskrift (Fagfellevurdert)
  • 6.
    Carosio, Federico
    et al.
    Politecn Torino, I-15121 Alessandria, Italy.
    Kochumalayil, Jose
    Cuttica, F.
    Camino, G.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Oriented Clay Nanopaper from Biobased Components Mechanisms for Superior Fire Protection Properties2015Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, nr 10, s. 5847-5856Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric Materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to Other clay nanocomposites and fiber composites. The Corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) Materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/ MTM interactions for char formation.

  • 7.
    Ezekiel Mushi, Ngesa
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Joby Kochumalayil, Jose
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Cervin, Nicholas
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanostructured hydrogel based on small diameter native chitin nanofibers: Preparation, structure and propertiesManuskript (preprint) (Annet vitenskapelig)
  • 8.
    Joby Kochumalayil, Jose
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Bergenstråhle-Wohlert, Malin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Utsel, Simon
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: Extending the range of mechanical and barrier properties2013Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, nr 1, s. 84-91Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of clay bionanocomposites requires processing routes with nanostructural control. Moreover, moisture durability is a concern with water-soluble biopolymers. Here, oriented bionanocomposite coatings with strong in-plane orientation of clay platelets are for the first time prepared by continuous water-based processing. Montmorillonite (MTM) and a "new" unmodified biological polymer (xyloglucan (XG)) are combined. The resulting nanocomposites are characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM is measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties are measured, also at high relative humidity. The reinforcement effects are modeled. XG dimensions in composites are estimated using atomistic simulations. The nanostructure shows highly oriented and intercalated clay platelets. The reinforcement efficiency and effects on barrier properties are remarkable and are likely to be due to highly oriented and well-dispersed MTM and strong XG-MTM interactions. Properties are well preserved in humid conditions and the reasons for this are discussed.

  • 9.
    Joby Kochumalayil, Jose
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Morimune, Seira
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nishino, Takashi
    Walther, Andreas
    Ikkala, Olli
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nacre-mimetic xyloglucan/clay bionanocomposites prepared from hydrocolloidal suspension – a chemical modification route for preserved performance at high humidityManuskript (preprint) (Annet vitenskapelig)
  • 10.
    Joby Kochumalayil, Jose
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Kasai, Wakako
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Regioselective modification of a xyloglucan hemicellulose for high-performance biopolymer barrier films2013Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 93, nr 2, s. 466-472Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biobased polymers such as starch and hemicelluloses from wood are of interest for packaging applications, but suffer from limitations in performance under moist conditions. Xyloglucan from industrial tamarind seed waste offers potential, but its Tg is too high for thermal processing applications. Regioselective modification is therefore performed using an approach involving periodate oxidation followed by reduction. The resulting polymer structures are characterized using MALDI-TOF-MS, size-exclusion chromatography, FTIR and carbohydrate analysis. Films are cast from water and characterized by thermo-gravimetry, dynamic mechanical thermal analysis, dynamic water vapor sorption, oxygen transmission and tensile tests. Property changes are interpreted from structural changes. These new polymers show much superior performance to current petroleum-based polymers in industrial use. Furthermore, this regioselective modification can be carefully controlled, and results in a new type of cellulose derivatives with preserved cellulose backbone without the need for harmful solvents.

  • 11.
    Kochumalayil, Joby J.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Moisture-stable clay-xyloglucan nanocomposites prepared from hydrocolloidal suspensions2014Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, s. 204-CELL-Artikkel i tidsskrift (Annet vitenskapelig)
  • 12.
    Kochumalayil, Joby J.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Water-soluble hemicelluloses for high humidity applications - enzymatic modification of xyloglucan for mechanical and oxygen barrier properties2014Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 16, nr 4, s. 1904-1910Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bio-based polymers are of increasing interest in packaging applications as alternatives to petroleum-based polymers. Xyloglucan (XG) derived from tamarind seed waste was recently explored as a high performance biopolymer for packaging applications. Xyloglucan films have high strength, stiffness and oxygen barrier performance, but suffer from limitations in properties under high humidity conditions. This aspect is addressed in the present work using XG modification by enzymatic removal of side chain galactose residues. The modified XG was characterized using carbohydrate analysis and MALDI-TOF MS analysis for sugar and oligosaccharide compositions respectively. The consequence of galactose removal for XG chain packing was theoretically predicted using a group contribution method and the estimation of Hansen's solubility parameters. The properties of films made from modified XG in terms of tensile, oxygen transmission rate, and thermo-mechanical behaviour were measured and related to the structure of modified XGs. Modified XG films preserved the Young's modulus at high humidity at a level of 4.3 GPa at 92% relative humidity. Moreover, the oxygen permeability of modified XG samples was very low and was about 1.5 cc mu m [m(2) day](-1) kPa(-1) at 80% relative humidity, more than 80% lower than that for native XG. The main reason is that modified XG absorbs less moisture, due to a decreased solubility. Decreased free volume may also contribute, as galactose residues are removed and XG branches become shorter.

  • 13.
    Kochumalayil, Joby Kochumalayil
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Morimune, Seira
    Nishino, Takashi
    Ikkala, Olli
    Walther, Andreas
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nacre-Mimetic Clay/Xyloglucan Bionanocomposites: A Chemical Modification Route for Hygromechanical Performance at High Humidity2013Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, nr 11, s. 3842-3849Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nacre-mimetic bionanocomposites of high montmorillonite (MTM) clay content, prepared from hydra. colloidal suspensions, suffer from reduced strength and stiffness at high relative humidity. We address this problem by chemical modification of xyloglucan in (XG)/MTM nacremimetic nanocomposites, by subjecting the XG to regioselective periodate oxidation of side chains to enable it to form covalent cross-links to hydroxyl groups in neighboring XG chains or to the MTM surface. The resulting materials are analyzed by FTIR spectroscopy, thermogravimetric analysis, carbohydrate analysis, calorimetry, X-ray diffraction, scanning electron microscopy, tensile tests, and oxygen barrier properties. We compare the resulting mechanical properties at low and high relative humidity. The periodate oxidation leads to a strong increase in modulus and strength of the materials. A modulus of 30 GPa for cross-linked composite at 50% relative humidity compared with 13.7 GPa for neat XG/MTM demonstrates that periodate oxidation of the XG side chains leads to crucially improved stress transfer at the XG/MTM interface, possibly through covalent bond formation. This enhanced interfacial adhesion and internal cross-linking of the matrix moreover preserves the mechanical properties at high humidity condition and leads to a Young's modulus of 21 GPa at 90%RH.

  • 14.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Tamarind seed xyloglucan: a promising biopolymer matrix for bioinspired nanocomposite materials2010Konferansepaper (Annet vitenskapelig)
  • 15.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Zhou, Qi
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Xyloglucan films2009Patent (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The present invention pertains to films comprising xyloglucan, processes for preparing films comprising xyloglucan, as well as various uses of said films as for instance packaging material. Specifically, the present invention relates to xyloglucan films having advantageous properties relating to inter alia tensile strength, elastic modulus, and strain-to-failure.

  • 16.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Sehaqui, Houssine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Tamarind seed xyloglucan: a thermostable high-performance biopolymer from non-food feedstock2010Inngår i: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 20, nr 21, s. 4321-4327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Polysaccharide biopolymers from renewable resources are of great interest as replacements for petroleum-based polymers since they have lower cradle-to-grave non-renewable energy use and greenhouse gas emissions. Starch is widely used as a packaging material but is based on food resources such as potato or corn, and suffers from high sensitivity to water vapor even under ambient conditions. For the first time, xyloglucan (XG) from tamarind seed waste is explored as an alternative high-performance biopolymer from non-food feedstock. XG is purified, and dissolved in water to cast films. Moisture sorption isotherms, tensile tests and dynamic mechanical thermal analysis are performed. Glycerol plasticization toughening and enzymatic modification (partial removal of galactose in side chains of XG) are attempted as means of modification. XG films show much lower moisture sorption than the amylose component in starches. Stiffness and strength are very high, with considerable ductility and toughness. The thermal stability is exceptionally high and is approaching 250 degrees C. Glycerol plasticization is effective already at 10% glycerol. These observations point towards the potential of XG as a "new'' biopolymer from renewable non-food plant resources for replacement of petroleum-based polymers.

  • 17.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Nanostructured high-performance biocomposites based on Tamarind seed polysaccharide2011Konferansepaper (Annet vitenskapelig)
  • 18.
    Kochumalayil, Joby
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Centra, Strategiskt Centrum för Biomimetiska Material, BioMime. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Nanostructured high-performance biocomposites based on Tamarind seed xyloglucan2011Konferansepaper (Annet vitenskapelig)
  • 19.
    Kochumalayil Jose, Joby
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Xyloglucan-based polymers and nanocomposites – modification, properties and barrier film applications2012Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Biopolymers from renewable resources are of interest for packaging applications as an alternative to conventional petroleum-based polymers. One of the major application areas for biopolymers is food packaging, where a candidate polymer should meet critical requirements such as mechanical and oxygen barrier performance, also in humid conditions. Starch has long been used in certain packaging applications, either in plasticized state or blended with other polymers. However, native starch has high sensitivity to water and low mechanical and barrier performance. Recently, wood-derived hemicelluloses have been extensively studied as oxygen barrier films, but suffer from low film-forming ability and mechanical performance. In the present study, xyloglucan (XG) from tamarind seed waste is explored as an alternative high-performance biopolymer in packaging applications. The obstacles of polysaccharides in terms of moisture sensitivity and processability are addressed in this thesis.

    In Paper I, film properties of XG were studied. XG has a cellulose backbone, but unlike cellulose, it is mostly soluble in water forming highly robust films. Moisture sorption isotherms, tensile tests and dynamic mechanical thermal analysis were performed. Enzymatic modification (partial removal of galactose in side chains of XG) was performed to study the effect of galactose on solubility and filmforming characteristics. XG films showed lower moisture sorption than starch. Stiffness and tensile strength were very high of the order of 4 GPa and 70 MPa respectively, with considerable ductility and toughness. The thermomechanical performance was very high with a softening temperature near 260 ºC.

    In Paper II, several plasticizers were studied in order to facilitate thermal processing of XG films: sorbitol, urea, glycerol and polyethylene oxide. Films of different compositions were prepared and studied for thermomechanical and tensile properties. Highly favorable characteristics were found with XG/sorbitol system. A large drop in glass transition temperature (Tg) of XG of the order of 100 ºC with 20 - 30 wt% sorbitol was observed with an attractive combination of increased toughness.

    In Paper III, XG was chemically modified and the structure-property relationship of modified XG studied. XG modification was performed using an approach involving periodate oxidation followed by reduction. The oxidation is highly regioselective, where the side chains of XG are mostly affected with the cellulose backbone well-preserved as noticed from MALDI-TOF-MS and carbohydrate analysis. Films were cast from water and characterized by dynamic mechanical thermal analysis, dynamic water vapor sorption, oxygen transmission analysis and tensile tests. Property changes were interpreted from structural changes. The regioselective modification results in new types of cellulose derivatives without the need for harmful solvents.

    In Paper IV, moisture durability of XG was addressed by dispersing montmorillonite (MTM) platelets in water suspension. Oriented bionanocomposite coatings with strong in-plane orientation of clay platelets were prepared. A continuous water-based processing approach was adopted in view of easy scaling up. The resulting nanocomposites were characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM was measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties were measured, also at high relative humidity. The reinforcement in mechanical properties and effects on barrier properties were remarkable, also in humid conditions.

    In Paper V, cross-linked XG/MTM composite was prepared with high clay content (ca. 45 vol%) by an industrially scalable “paper-making” method. Instead of using cross-linking molecules, cross-linking sites were created on the XG chain by selective oxidation of side chains. The in-plane orientation of MTM platelets were studied using XRD and FE-SEM. The mechanical properties and barrier performance were evaluated for the resulting 'nacre-mimetic' nanocomposites. The elastic modulus of cross-linked nanocomposites is as high as 30 GPa, one of the stiffest bionanocomposites reported.

  • 20.
    Larsson, Per A.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-crosslinking fibrillated cellulose2013Inngår i: Advances in pulp and paper research, Cambridge 2013: transactions of the 15th Fundamental Research Symposium held in Cambridge: September 2013, Lancashire, UK: Bury, Lancashire : The Pulp Fundamental Research Society , 2013, , s. 16s. 851-866Konferansepaper (Fagfellevurdert)
    Abstract [en]

    To replace petroleum-based barriers used in, for example, packaging applications with a bio-based alternative, the sensitivity to moisture must be lowered. The present work describes the fabrication and characterisation of cellulose-based films with remarkably improved oxygen and water-vapour-barrier properties at 80% relative humidity. This was achieved by fabricating films of self-cross-linking fibrillated cellulose after partial periodate oxidation to dialdehyde cellulose. At a relative humidity of 80%, films made of 27% and 44% oxidised cellulose, respectively, showed less than half the permeability of the untreated reference; 3.8 g·mm/(m2·24 h·kPa) and 3.7 g·mm/(m2·24 h·kPa) compared to 8.0 g·mm/(m2·24 h·kPa). This was presumably due to a lower moisture uptake in the films, and consequently less swelling. In the absence of moisture, films from both unmodified and modified fibrillated cellulose were ideal oxygen barriers, but at a relative humidity of 80%, films based on 27% and 44% converted cellulose had an oxygen permeability of 2.2 ml·µm/(m2·24 h·kPa) and 1.8 ml·µm/(m2·24 h·kPa), respectively, compared to 9.2 ml·µm/(m2·24 h·kPa) for the non-oxidised material.

    The cross-linking resulted in an embrittlement of the films, but the 27% oxidised material still had a tensile strength of 148 MPa and a tensile strain at break of 2.0%, which is sufficient in, for example, many packaging applications.

  • 21.
    Marais, Andrew
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Nilsson, Camilla
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Fogelström, Linda
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Gamstedt, E. Kristofer
    Uppsala Univ, Uppsala, Sweden.
    Toward an alternative compatibilizer for PLA/cellulose composites: Grafting of xyloglucan with PLA2012Inngår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 89, nr 4, s. 1038-1043Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Poly(L-lactic acid) (PLLA) chains were grafted on xyloglucan substrates via ring-opening polymerization of the L-Iactide monomer. Different parameters such as the nature of the substrate (native or modified xyloglucan) and the substrate/monomer ratios were varied in the synthesis to achieve different lengths of the grafted chains. A range of experimental techniques including infrared spectroscopy and nuclear magnetic resonance were used to characterize the final product. Thermal analysis showed that the glass transition temperature of xyloglucan was decreased from 252 degrees C to 216 degrees C following the grafting of PLLA. The grafting of less hydrophilic chains from xyloglucan also affected the interaction with water: the PLEA-grafted xyloglucan was insoluble in water and the moisture uptake could be decreased by about 30%. Xyloglucan adsorbs strongly to cellulose; therefore such a graft copolymer may improve the compatibility between cellulose fibers and PLLA. The PLEA-grafted xyloglucan may be useful as a novel compatibilizer in fiber-reinforced PLEA composites.

  • 22.
    Mushi, Ngesa Ezekiel Zekiel
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Cervin, Nicholas Tchang Chang
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nanostructurally Controlled Hydrogel Based on Small-Diameter Native Chitin Nanofibers: Preparation, Structure, and Properties2016Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chitin nanofibers of unique structure and properties can be obtained from crustacean and fishery waste. These chitin nanofibers have roughly 4nm diameters, aspect ratios between 25-250, a high degree of acetylation and preserved crystallinity, and can be potentially applied in hydrogels. Hydrogels with a chitin nanofiber content of 0.4, 0.6, 0.8, 1.0, 2.0, and 3.0wt% were successfully prepared. The methodology for preparation is new, environmentally friendly, and simple as gelation is induced by neutralization of the charged colloidal mixture, inducing precipitation and secondary bond interaction between nanofibers. Pore structure and pore size distributions of corresponding aerogels are characterized using auto-porosimetry, revealing a substantial fraction of nanoscale pores. To the best of our knowledge, the values for storage (13kPa at 3wt%) and compression modulus (309kPa at 2wt%) are the highest reported for chitin nanofibers hydrogels.

  • 23.
    Sehaqui, Houssine
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Kochumalayil, Joby
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Liu, Andong
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Zimmermann, Tanja
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances2013Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 5, nr 15, s. 7613-7620Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To address brittleness of nanoclay hybrids of high inorganic content, ductile polymers (polyethylene oxide and hydroxyethyl cellulose) and montmorillonite (MTM) have been assembled into hybrid films using a water-based filtration process. Nacre-mimetic layered films resulted and were characterized by FE-SEM and XRD. Mechanical properties at ambient condition were studied by tensile test, while performance at elevated temperature and moisture conditions were evaluated by TGA, dynamic vapor sorption, and dynamic thermomechanical and hygromechanical analyses. Antiflammability and barrier properties against oxygen and water vapor were also investigated. Despite their high MTM content in the 60-85 wt % range, the hybrids exhibit remarkable ductility and a storage modulus above 2 GPa even in severe conditions (300 degrees C or 94% RH). Moreover, they present fire-shielding property and are amongst the best oxygen and water vapor barrier hybrids reported in the literature. This study thus demonstrates nanostructure property advantages for synergistic effects in hybrids combining inexpensive, available, and environmentally benign constituents.

  • 24.
    Wang, Yan
    et al.
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Wohlert, Jakob
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Bergenstråhle-Wohlert, Malin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Kochumalayil, Joby J.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Tu, Yaoquan
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Ågren, Hans
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Molecular Adhesion at Clay Nanocomposite Interfaces Depends on Counterion Hydration-Molecular Dynamics Simulation of Montmorillonite/Xyloglucan2015Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, nr 1, s. 257-265Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nacre-mimetic clay/polymer nanocomposites with clay platelet orientation parallel to the film surface show interesting gas barrier and mechanical properties. In moist conditions, interfacial adhesion is lowered and mechanical properties are reduced. Molecular dynamic simulations (MD) have been performed to investigate the effects of counterions on molecular adhesion at montmorillonite clay (Mnt)-xyloglucan (XG) interfaces. We focus on the role of monovalent cations K+, Na+, and Li+ and the divalent cation Ca2+ for mediating and stabilizing the Mnt/XG complex formation. The conformation of adsorbed XG is strongly influenced by the choice of counterion and so is the simulated work of adhesion. Free energy profiles that are used to estimate molecular adhesion show stronger interaction between XG and clay in the monovalent cation system than in divalent cation system, following a decreasing order of K-Mnt, Na-Mnt, Li-Mnt, and Ca-Mnt. The Mnt clay hydrates differently in the presence of different counterions, leading to a chemical potential of water that is highest in the case of K-Mnt, followed by Na-Mnt and Li-Mnt, and lowest in the case of Ca-Mnt. This means that water is most easily displaced from the interface in the case of K-Mnt, which contributes to the relatively high work of adhesion. In all systems, the penalty of replacing polymer with water at the interface gives a positive contribution to the work of adhesion of between 19 and 35%. Our work confirms the important role of counterions in mediating the adsorption of biopolymer XG to Mnt clays and predicts potassium or sodium as the best choice of counterions for a Mnt-based biocomposite design.

  • 25.
    Wang, Yan
    et al.
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Wohlert, Jakob
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhang, Qiong
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Tu, Yaoquan
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Ågren, Hans
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Jose, Joby Kochumalayil
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Molecular dynamic simulations of xyloglucan adsorbed onto Na-montmorillonite clay: Exploration of interaction mechanisms and conformational properties2013Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 246, s. 342-POLY-Artikkel i tidsskrift (Annet vitenskapelig)
1 - 25 of 25
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf