Endre søk
Begrens søket
1 - 24 of 24
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abeywecra, Ruchira
    et al.
    OUSL, Dept Mech Engn, Nugegoda, Sri Lanka..
    Scnanavakc, Nihal S.
    OUSL, Dept Mech Engn, Nugegoda, Sri Lanka..
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten H.
    EIT InnoEnergy, Eindhoven, Netherlands..
    A Remote Mode High Quality International Master Degree Program in Environomical Pathways for Sustainable Energy Systems (SELECT) -Pilot Program Experiences During First Year of Studies2018Inngår i: PROCEEDINGS OF 2018 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON) - EMERGING TRENDS AND CHALLENGES OF ENGINEERING EDUCATION, IEEE , 2018, s. 276-284Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Remote mode study programs at master degree level are becoming more popular than undergraduate level programs. Students after graduation with Bachelors degree very often are employed and the most appropriate mode for them to pursue higher studies is the remote mode. Postgraduate programs with one or two year duration mostly focus on specific areas of research based industrial application. Traditional remote education is thought to be more centered on web based on-line programs with a little opportunity for teacher student interaction and interaction with peers. In such programs motivation for studies has been a problem and as a result many students drop off and also those remain in the program for prolonged periods do not show good performance. One of the reasons for failures of students in remote studies is the isolation leading to discouragement for the completion studies. A remote mode Master Degree Program in Environomical Pathways for Sustainable Energy Systems (MSc-SELECT), consisting of a number of innovative features aimed at improved student engagement, motivation, exposure to experiences in multi-national setting and team work, was developed and implemented by the Master School of the EIT-InnoEnergy, as a pilot project. The program was offered, collaboratively and simultaneously to students in three locations, Royal Institute of Technology in Sweden, Universitat Politecnica de Catalunya in Spain and the Open University of Sri Lanka. The students in Sweden and Spain each followed 50% of the courses on-campus and 50% in remote mode depending upon the university they registered with. The students in Sri Lanka followed the entire 1st year fully remotely. All the students (from KTH, OUSL and UPC) will spend the 2nd year on-campus at another university in the consortium. This paper discusses, from the perspective of the fully remote site, the remote program with its innovative aspects, student performance and experience together with future tasks for making the program viable and beneficial to all partner countries.

  • 2. Abeyweera, Ruchira
    et al.
    Senanayake, Nihal S.
    Senaratne, Chamindie
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. EIT InnoEnergy, Sweden.
    Fransson, Torsten H.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. EIT InnoEnergy, Sweden.
    Capacity Building Through a Web Based Master Degree Programme in Sustainable Energy Engineering2017Inngår i: PROCEEDINGS OF 2017 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON2017), IEEE, 2017, s. 800-805Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Open Distance Learning is gaining popularity as a successful alternative for on-campus higher education especially with the emergence of web based platforms which enable the online delivery of courses worldwide. This emerging educational pedagogy can successfully be employed as means of capacity building of the people living in the less fortunate parts of the world where higher education especially at master level are scarce. This paper presents a two-year collaborative master study programme in sustainable energy engineering offered in synchronous with an on-campus study programme conducted by the KTH Royal Institute of Technology of Sweden, to students of Sri Lanka, which was facilitated by the Open University of Sri Lanka. The paper describes the need of such a programme, the format of course delivery and assessment thereof, plus the benefits gained. This programme has produced 72 post graduates in Sri Lanka alone and more than 200 distant postgraduates worldwide in the field of sustainable energy engineering during last 10 years period. In terms of capacity building in the energy sector in Sri Lanka this is considered a great achievement. The experience gained by the local staff in the role of local facilitators who engaged in some of the academic related activities such as evaluation of students' presentation and co-supervision of thesis projects have been greatly appreciated as being additional benefits to the staff in terms of their own academic development and capacity building. Finally, conclusions are made on how remote programmes of study could successfully be delivered to places where such know-how is scarce by adapting appropriate technologies in training personnel at postgraduate level to meet the needs of the industry.

  • 3.
    Afzal, Muhammad
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Saleemi, Mohsin
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik.
    Wang, Baoyuan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Xia, Chen
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhang, Wei
    He, Yunjuan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhu, Binzhu
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier2016Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 328, s. 136-142Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 degrees C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm(2), while a three layer (anode/ electrolyte/cathode) SOFC has reached only 425 mW/cm(2) at 550 degrees C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 degrees C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  • 4.
    Andrae, Johan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Johansson, David
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Bursell, Martin
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Manrique Carrera, Arturo
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    High-pressure catalytic combustion of gasified biomass in a hybrid combustor2005Inngår i: Applied Catalysis A: General, ISSN 0926-860X, E-ISSN 1873-3875, Vol. 293, nr 1-2, s. 129-136Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Catalytic combustion of synthetic gasified biomass was conducted in a high-pressure facility at pressures ranging from 5 to 16 bars. The catalytic combustor design considered was a hybrid monolith (400 cpsi, diameter 3.5 cm, length 3.6 cm and every other channel coated). The active phase consisted of 1 wt.% Pt/gamma-Al2O3 With wash coat loading of total monolith 15 wt.%. In the interpretation of the experiments, a twodimensional boundary layer model was applied successfully to model a single channel of the monolith. At constant inlet velocity to the monolith the combustion efficiency decreased with increasing pressure. A multi-step surface mechanism predicted that the flux of carbon dioxide and water from the surface increased with pressure. However, as the pressure (i.e. the Reynolds number) was increased, unreacted gas near the center of the channel penetrated significantly longer into the channel compared to lower pressures. For the conditions studied (lambda = 46, T-in = 218-257 degrees C and residence time similar to 5 ms), conversion of hydrogen and carbon monoxide were diffusion limited after ignition, while methane never ignited and was kinetically controlled. According to the kinetic model surface coverage of major species changed from CO, H and CO2 before ignition to O, OH, CO2 and free surface sites after ignition. The model predicted further that for constant mass flow combustion efficiency increased with pressure, and was more pronounced at lower pressures (2.5-10 bar) than at higher pressures (> 10 bar).

  • 5. Arturo Manrique, Carrera
    et al.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Catalytic Partial Oxidation of Natural Gas in Gas Turbine Applications2013Inngår i: Proceedings of ASME Turbo Expo 2013, 2013Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    The demands of emissions, combustion efficiency over a wider operational range, and fuel flexibility for industrial gas turbine applications are expected to increase in the coming years. Currently, it is common the use of a stabilizing piloting diffusion flame during part load operation, this flame is accountable for an important part of the thermal NOx emissions on partial load, and in some cases also at full load operation. On the other hand Catalytic Partial Oxidation (CPO) of natural gas is a technique used in petrochemical industry for the Fischer-Tropsch process and for H2 production, and is based in the production of Syn-Gas rich in H2 and CO.

    The present work explores the possibility to use the CPO of natural gas in industrial gas turbine applications, it is based in experiments performed between 5 and 13 bar using an arrangement of Rh based catalyst and CH4. The experiments were done at the Catalytic Combustion High Pressure Test Facility, at the Royal Institute of Technology (KTH) in Sweden. The gas produced leaves the CPO reactor between 700 and 850 °C and it is rich in H2 and CO. It was found that the most important parameter after reaching the light off temperature in the CPO reactor is the equivalence ratio Φ, which evidences the kinetically controlled regime in the Rh catalyst that depends on O2 availability. The H2/CO ratio is close to the theoretical value of 2 and the selectivity towards H2 and CO are 90% and 95% respectively while the CH4 conversion reached approximately 55%.

    Pressure on the other hand had a small negative influence in the tested pressure range and it is more relevant at richer fuel conditions (high equivalence ratios). The CPO process had shown that it is relatively easy to control the operation temperature of the catalyst. This temperature is kept below the maximum allowed by reducing the O2 availability.

    The high temperature Syn-Gas gas produced through CPO process could be burnt in the downstream of the catalysts steadily at flame temperatures below the thermal-NOx threshold. The CPO reactor could provide the flame stabilization function at a wide range of operational conditions, and replace the diffusion piloting flame. This approach could cope with NOx and CO emissions in a wider operational range and offers the possibility of using different fuels as the reaction controlling factor is O2 availability. Furthermore, an initial design of a possible combustion strategy downstream of the CPO reactor is also presented.

  • 6. Arturo Manrique, Carrera
    et al.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Staged Lean Catalytic Combustion of Gasified Biomass for Gas Turbine Applications: an Experimental Approach to Investigate Performance of Catalysts2013Inngår i: Proceedings of ASME Turbo Expo 2013, 2013Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    Emission demands for gas turbine utilization will become more stringent in the coming years. Currently different techniques are used to reach low levels of NOx emissions. One possible solution is the Staged Lean Catalytic Combustion. In this concept a catalysts arrangement is used to generate high temperature combustion gases. The high temperature gases could be used to feed a second combustion stage in which more fuel is injected.

    In this work a series of experiments were performed at the Catalytic Combustion High Pressure Test Facility at the Royal Institute of Technology (KTH) in Sweden. The fuel used was a simulated gasified biomass and the catalytic combustor consisted of an arrangement of different catalysts, e.g. bimetallic, hexaaluminates, and perovskites catalysts. These were used as, ignition catalyst, medium temperature catalyst and high temperature catalyst respectively.

    The tests were performed between 5 and 13.5 bar, and the overall conversion varied between 60% and 70% and the temperature of flue gases could reach 750°C and contains high level of oxygen. The determining factor to control the exit gas temperature was the richness of the mixture (λ value). On the other hand, the increased pressure had a moderate negative effect in the overall fuel conversion. This effect is stronger at leaner mixtures compared to richer ones. Moreover, λ value and also pressure affected the temperature distribution along the reactor.

    The utilization of a lean catalytic combustion approach makes possible the use of a post catalytic combustion. In this region additional fuel is injected to fully burn the exiting gases and increase the exit temperature to the desired levels. This staged lean catalytic combustion approach could resemble moderate levels exhaust gas recirculation techniques and/or high air temperature combustion and it is also briefly examined in the present work.

  • 7. Bose, A.
    et al.
    Raj, K.
    Kuzeva, D.
    Mura, T.
    Xin, J.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Hybrid renewable power systems for generation of own power by small and medium-scale enterprises2018Inngår i: E3S Web of Conferences, EDP Sciences , 2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Decentralized power generation, from renewables, is an attractive option for the future energy transition. Through a case study, the techno-economic feasibility to produce own power from distributed renewable to de-carbonize the operations of the Small and Medium Scale Enterprises (SMEs) was critically analysed. The case study was performed on one of the leading printing outfits of Sri Lanka. Solar photovoltaic (PV) and biomass gasification systems are the most cost-efficient and easy to operate technologies for grid-connected, small-scale power generation, at present, for the context. Grid integration has been found as a major challenge, in both technical and economic parameters of the project. The low capacity factor of solar PV and complexity of the supply chain for biomass power systems are critical to the respective technologies. A hybrid Solar PV-Biomass gasification power plant would have superior techno-economic performances with lower environmental impact than stand-alone systems. An equal share of the net power capacity between the technologies was obtained as the most suitable combination for the proposed hybrid power plant. A net carbon dioxide reduction of more than eighty percent of the operations of the SMEs is feasible. Socio-political factors also have a high impact on overall viability of such small-scale systems.

  • 8.
    Dayananda, Chathuri
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik. Ecole Mines Nantes, France.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. EIT InnoEnergy Scandinavia AB, Sweden.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. EIT InnoEnergy Scandinavia AB, Sweden.
    Constructive learning methodology for distant based online education in renewable energy technologies2017Inngår i: PROCEEDINGS OF 2017 IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE (EDUCON2017), IEEE , 2017, s. 1033-1041Konferansepaper (Fagfellevurdert)
    Abstract [en]

    With the rising concerns about global warming, climate change and the rapid development in the renewable energy industry, many higher educational institutes such as engineering and technological schools around the world have started to offer various educational programs related to sustainable energy pedagogical topics. The knowledge of renewable energy will be a crucial part of scientific literacy for the future; hence it is an absolute necessity to develop easily accessible and flexible-learning approaches in order to succeed in this. Due to various factors, today, the digital online education concept is becoming very popular, both as blended on-campus and as stand-alone studies. Moreover, the traditional teacher driven education system is being also challenged and new student oriented teaching approaches are currently being identified and practiced by various educational experts. This paper discusses a case study developed by applying the learner-centered teaching concept and implemented as part of an online learning course offered for one month (14 hours of learning time was recommended per week) focusing on renewable energy technology innovations for five student groups in three countries. The methodology section of this paper discuss the application of aligned teaching methodology for designing and constructing the course, content deployment of an existing learning management tool and the implementation and course evaluation. Finally, the assessments were graded and results were analyzed to identify success of the new educational concept applied A survey questionnaire was also prepared to receive the thoughts about online learning courses and their experience with the online course performed From an overall point of view, the evaluation and the results exemplify the success and the acceptance of the offered online course by the participants providing good average grading and positive opinions of the method of implementation. Participants also expressed their greater enthusiasm and interest of participating in such online courses for renewable energy engineering, as many of the topics offered through the course are lacking in their existing or past study curriculums.

  • 9.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Experimental Investigations of High Pressure Catalytic Combustion for Gas Turbine Applications2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This work is devoted to generate knowledge and high quality experimental data of catalytic combustion at operational gas turbine conditions.

    The initial task of the thesis work was to design and construct a high pressure combustion test facility, where the catalytic combustion experiments can be performed at real gas turbine conditions. With this in mind, a highly advanced combustion test facility has been designed, constructed and tested. This test facility is capable of simulating combustion conditions relevant to a wide range of operating gas turbine conditions and different kinds of fuel gases. The shape of the combustor (test section) is similar to a “can” type gas turbine combustor, but with significant differences in its type of operation. The test combustor is expected to operate at near adiabatic combustion conditions and there will be no additions of cooling, dilution or secondary supply of air into the combustion process. The geometry of the combustor consists of three main zones such as air/fuel mixing zone, catalytic reaction zone and downstream gas phase reaction zone with no difference of the mass flow at inlet and exit. The maximum capacity of the test facility is 100 kW (fuel power) and the maximum air flow rate is 100g/s.

    The significant features of the test facility are counted as its operational pressure range (1 – 35 atm), air inlet temperatures (100 – 650 °C), fuel flexibility (LHV 4 - 40 MJ/m3) and air humidity (0 – 30% kg/kg of air). Given these features, combustion could be performed at any desired pressure up to 35 bars while controlling other parameters independently. Fuel flexibility of the applications was also taken into consideration in the design phase and proper measures have been taken in order to utilize two types of targeted fuels, methane and gasified biomass.

    Experimental results presented in this thesis are the operational performances of highly active precious metal catalysts (also called as ignition catalysts) and combinations of precious metal, perovskites and hexaaluminate catalysts (also called as fully catalytic configuration). Experiments were performed on different catalytic combustor configurations of various types of catalysts with methane and simulated gasified biomass over the full range of pressure. The types of catalysts considered on the combustor configurations are palladium on alumina (Pd/AL2O3), palladium lanthanum hexaaluminate (PdLaAl11O19), platinum on alumina (Pt/AL2O3),and palladium:platinum bi-metal on alumina (Pd:Pt/AL2O3). The influence of pressure, inlet temperature, flow velocity and air fuel ratio on the ignition, combustion stability and emission generation on the catalytic system were investigated and presented.

    Combustion catalysts were developed and provided mainly by the project partner, the Division of Chemical Technology, KTH. Division of Chemical Reaction Technology, KTH and Istituto di Ricerche sulla Combustione (CNR) Italy were also collaborated with some of the experimental investigations by providing specific types of catalysts developed by them for the specific conditions of gas turbine requirements.

    Fulltekst (pdf)
    Thesis
    Download (pdf)
    Errata
  • 10.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Ersson, Anders
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Ultra Low Emission Gas Turbine Combustion: An Expoerimental Investigation of Catalytically Stabilizws Lean Pre-mixed Combustion on Modern Gas Turbine Conditions2004Konferansepaper (Fagfellevurdert)
  • 11.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Ersson, Andreas
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Catalytic Combustion Developments for Ultra Low Emission Gas Turbine Combustion2003Konferansepaper (Fagfellevurdert)
  • 12.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Ersson, Andreas
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Experimental Investigations of High Pressure Catalytic Combustion of Methane2003Konferansepaper (Fagfellevurdert)
  • 13.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Persson, Katarina
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Thevenin, Philippe
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Kemisk teknologi.
    Bench Scale Experimental Test Rig  for High Pressure Catalytic Combustion2002Konferansepaper (Fagfellevurdert)
  • 14.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Manrique, Arturo
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten H.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Experimental investigations of catalytic combustion for high-pressure gas turbine applications2006Inngår i: Proceedings of the ASME Turbo Expo 2006, Vol 1, 2006, s. 763-771Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Catalytic combustion has proven to be a suitable alternative to conventional flame combustion in gas turbines for achieving Ultra-Low Emission levels (ULE). In the process of catalytic combustion, it is possible to achieve a stable combustion of lean fuel/air mixtures which results in reduced combustion temperature in the combustor. The ultimate result is that almost no thermal-NOx is formed and the emissions of carbon monoxide and hydrocarbon emissions are reduced to single-digit limits. Successful development of catalytic combustion technology would lead to reducing pollutant emissions in gas turbines to ultra-low levels at lower operating costs. Since the catalytic combustion prevents the pollutant formations in the combustion there is no need for costly emission cleaning systems.

  • 15.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Manrique Carrera, Arturo
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten H.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Gasified biomass fuelled gas turbine: Combustion stability and selective catalytic oxidation of fuel-bound nitrogen2006Inngår i: Proceedings of the ASME Turbo Expo 2006, Vol 1, 2006, s. 773-780Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Low heating value of gasified biomass and its fuel bound nitrogen containing compounds challenge the efforts on utilizing gasified biomass on gas turbine combustor. Low heating value of the gas brings along combustion stability issues and pollutant emission concerns. The fuel bound nitrogen present in gasified biomass could completely be converted to NOx during the combustion process. Catalytic combustion technology, showing promising developments on ultra low emission gas turbine combustion of natural gas could also be the key to successful utilization of biomass in gas turbine combustor. Catalysts could stabilize the combustion process of low heating value gas while the proper design of the catalytic configuration could selectively convert the fuel bound nitrogen into molecular nitrogen. This paper presents preliminary results of the experimental investigations on combustion stability and nitrogen selectivity in selective catalytic oxidation of ammonia in catalytic combustion followed by a brief description of the design of catalytic combustion test facility. The fuel-NOx reduction strategy considered in this study was to preprocess fuel in the catalytic system to remove fuel bound nitrogen before real combustion reactions occurs. The catalytic combustion system studied here contained two stage reactor in one unit containing fuel preprocessor (SCO catalyst) and combustion catalysts. Experiments were performed under lean combustion conditions (lambda value from 6 up to 22) using a simulated mixture of gasified biomass. The Selective Catalytic Oxidation approach was considered to reduce the conversion of NH3 into N-2. Results showed very good combustion stability, higher combustion efficiency and good ignition performances under the experimental conditions. However, the selective oxidation of fuel bound nitrogen into N-2 was only in the range of 20% to 30% under the above conditions.

  • 16.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Manrique, Carrera
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fredriksson, Jan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    High Pressure Catalytic Combustion of Methane in a Multi Segmented Catalytic Combustor2005Konferansepaper (Annet vitenskapelig)
  • 17.
    Jayasuriya, Jeevan
    et al.
    KTH, Skolan för industriell teknik och management (ITM).
    Manrique, Carrera
    Fredriksson, J
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Ersson, A.T
    Järås, S
    Gasified Biomass Fuelled Gas Turbine: Combustion Stability and Selective Catalytic Oxidation of Fuel-bound Nitrogen2004Konferansepaper (Fagfellevurdert)
  • 18.
    Kithsiri, U. G.
    et al.
    KTH. The Open University of Sri Lanka, Colombo, Sri Lanka.
    Peiris, A. P. T. S.
    KTH. The Open University of Sri Lanka, Colombo, Sri Lanka.
    Wickramarathna, Tharanga
    KTH. The Open University of Sri Lanka, Colombo, Sri Lanka.
    Amarawardhana, Kumudu
    KTH. The Open University of Sri Lanka, Colombo, Sri Lanka.
    Abeyweera, Ruchira
    KTH. The Open University of Sri Lanka, Colombo, Sri Lanka.
    Senanayake, N. N.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. EIT InnoEnergy, Stockholm, Sweden.
    Fransson, Torsten H.
    EIT InnoEnergy, Eindhoven, Netherlands.
    A Remote Mode Master Degree Program in Sustainable Energy Engineering: Student Perception and Future Direction2018Inngår i: 20th International Conference on Interactive Collaborative Learning, ICL 2017, Springer Verlag , 2018, s. 673-683Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Remote mode higher education at postgraduate level is becoming popular among students because of flexible learning opportunity and the accessibility to study programs offered by renowned universities in the world. Fast development of internet facilities and learner management systems along with the development of remote educational pedagogy have been the driving force behind the acceptance and development of distant mode study programs. The success of such a study programs is largely affected by several factors that are unique to the university that offers the study program and the demography of participants as well as infrastructure and the student support available at the receiving end. In the present study, the successes and the drawbacks as perceived by the participants of a distant master study program are evaluated. The study program considered was the Sustainable Energy Engineering Worldwide (SEEW) master degree program which was offered by the Royal Institute of Technology (KTH) in Sweden to students in Sri Lanka (Apart from Sri Lanka, SEEW was offered by KTH to some other countries; Zimbabwe, Ethiopia, Mauritius). The objective of offering the SEEW master program was to assist the developing nations to build up human resources with expertise in sustainable energy generation and utilization, hence contributing to national development. As such the program also generally contributes to global efforts of alleviating unfavourable environmental impacts connected with power generation and utilization. The SEEW master program consisted of 120 ECTS (ECTS: European Credit Transfer System) and the courses were offered over three semesters followed by a research project of 30 ECTS during the fourth semester. Lectures were delivered synchronous with the parallel KTH on-campus study program in real time through internet with the support of a learner management system. The students were attached to the Open University of Sri Lanka (OUSL) for providing academic support where necessary and for the supervision of written and online examinations. The first enrolment consisted of 21 students in intake 2008 and the program was conducted with varying student numbers until the intake 2010. A total of 72 students have successfully completed the SEEW program and they are at presently employed in key organizations in the energy sector as well as in national universities in Sri Lanka. The paper focusses on eight key areas that the students have identified as vital for success for this type of programs. These key areas are the effectiveness of web tools used, standard of teaching, standard of course content, examination procedures, online assessment, thesis projects, benefit to the students, and benefits to facilitating university. In the study 36 students responded to survey and overall rating of the program successfulness was identified as 72%. 

  • 19.
    Manrique Carrera, Arturo
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Persson, Katarina
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Catalytic Combustion of Gasified Biomass for Gas Turbine Applications: Experimental Investigation at High Pressure2005Inngår i: Proceedings of the 6th International Workshop on Catalytic Combution, 2005, Vol. 100, s. 9-14Konferansepaper (Fagfellevurdert)
  • 20.
    Persson, Katarina
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Ersson, Anders
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Manrique Carrera, Arturo
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fakhrai, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Järås, Sven
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik.
    Supported palladium-platinum catalyst for methane combustion at high pressure2005Inngår i: Catalysis Today, ISSN 0920-5861, E-ISSN 1873-4308, Vol. 100, s. 479-483Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Catalytic combustion of methane over a supported bimetallic Pd-Pt catalyst and a monometallic Pd catalyst has been investigated experimentally. Two different reactor configurations were used in the study, i.e. a tubular lab-scale reactor working at atmospheric pressure and a high-pressure reactor working at up to 15 bar. The results showed that the bimetallic catalyst has a clearly more stable activity during steady-state operation compare to the palladium only catalyst. The activity of the bimetallic catalyst was slightly higher than for the palladium catalyst. These results were established in both test facilities. Further, the impact of pressure on the combustion activity has been studied experimentally. The tests showed that the methane conversion decreases with increasing pressure. However, the impact of pressure is more prominent at lower pressures and levels out for pressures above 10 bar

  • 21.
    Ranasinghe, C.
    et al.
    KTH.
    Noor, Hina
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    A simplified method for determining gas turbine performance parameters based upon available catalogue data2014Inngår i: Proceedings of the ASME Turbo Expo, 2014Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Overall theoretical performance analysis of gas turbines can be conducted by applying design parameters into several thermodynamic theories and equations. However, limited availability of the design parameters will not provide sufficient room for a detailed analysis. Ga s turbine manufacturers publish only a limited amount of design/performance data, while important parameters remained hidden and the available information is not sufficiently enough for obtaining a complete gas turbine performance dataset. Five main parameters commonly provided by a gas turbine manufacturer's catalogues; pressure ratio of the compressor, exhaust mass flow rate, exhaust temperature of flue gas, overall efficiency, and electrical output. A theoretical model developed based on Mathcad software as documented in literature is used to reveal other hidden gas turbine parameters. A similar theoretical model using another solver was developed to obtain a complete dataset by using the available catalogue data with additional assumptions, which correspond to the commercial state of the art. The engineering equation solver (EES) software has been used as a platform to rebuild the theoretical model. As the main development, a graphical user interphase (GUI) has been introduced to the new program with the aim to make it more user friendly. Furthermore on top of obtaining the hidden thermodynamic parameters for the gas turbine, performing flue gas analysis and an exergy analysis has now become possible through this program. The developed EES program is expected to be run in the learning laboratory at the Division of Heat and Power Technology, Department of Energy Technology, Royal Institute of Technology (KTH), Stockholm and finally it is going to be incorporated into CompEdu Learning Platform of the same division.

  • 22.
    Zhang, Xiaoxiang
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fakhraie, Reza
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Evaluation of reduced kinetics in simulation of gasified biomass gas combustion2013Inngår i: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition: Volume 1B: Combustion, Fuels and Emissions, ASME Press, 2013, Vol. 1B, s. V01BT04A045-Konferansepaper (Fagfellevurdert)
    Abstract [en]

    It is essentially important to use appropriate chemical kinetic models in the simulation process of gas turbine combustion. To integrate the detailed kinetics into complex combustion simulations has proven to be a computationally expensive task with tens to thousands of elementary reaction steps. It has been suggested that an appropriate simplified kinetics which are computationally efficient could be used instead. Therefore reduced kinetics are often used in CFD simulation of gas turbine combustion. At the same time, simplified kinetics for specific fuels and operation conditions need to be carefully selected to fulfill the accuracy requirements. The applicability of several simplified kinetics for premixed Gasified Biomass Gas (GBG) and air combustion are evaluated in this paper. The current work is motivated by the growing demand of gasified biomass gas (GBG) fueled combustion. Even though simplified kinetic schemes developed for hydrocarbon combustions are published by various researchers, there is little research has been found in literature to evaluate the ability of the simplified chemical kinetics for the GBG combustion. The numerical Simulation tool "CANTERA" is used in the current study for the comparison of both detailed and simplified chemical kinetics. A simulated gas mixture of CO/H2/CH4/CO2/N2 is used for the current evaluation, since the fluctuation of GBG components may have an unpredictable influence on the simulation results. The laminar flame speed has an important influence with flame stability, extinction limits and turbulent flame speed, here it is chosen as an indicator for validation. The simulation results are compared with the experimental data from the previous study [1] which is done by our colleagues. Water vapour which has shown a dilution effect in the experimental study are also put into concern for further validation. As the results indicate, the reduced kinetics which are developed for hydrocarbon or hydrogen combustion need to be highly optimized before using them for GBG combustion. Further optimization of the reduced kinetics is done for GBG and moderate results are achieved using the optimized kinetics compared with the detailed combustion kinetics.

    Fulltekst (pdf)
    fulltext
  • 23.
    Zhang, Xiaoxiang
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Kinetic Evaluation of the Laminar Flame Speed for Biomass Derived Gas CombustionManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The gas composition derived from gasification of biomass has been used in gasturbine combustion to achieve higher energy efficiency. However, there is an essential requirement to better understand the combustion characteristics of biomass derived gas before it can be used in the existing combustion facilities. A quantified study of the laminar flame speed of biomass derived gas combustionis presented in this paper. The study was carried out based on the kinetic model of the biomass derived gas flame and the results are compared with the experimental data from the our laboratory and various literatures. The laminarflame speed of the biomass derived gas was evaluated through a range of initial temperature (298 K - 398 K) and pressure (1 atm - 10 atm), as well as with various gas compositions. An empirical relationship for estimating the laminarflame speed has been derived for a composition of typical biomass derived gas. Furthermore, the evaluation of laminar flame speeds with various compositions have been carried out through numerical calculations and results were compared with experimental data from previous studies. The hydrogen concentration in gas composition has shown an essential importance for the laminarflame speed variation.

  • 24.
    Zhang, Xiaoxiang
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fransson, Torsten
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Kinetic Study on Ignition Delay Time of Biomass Derived Gas CombustionManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The ignition delay time is one of the fundamental characteristics of a combustionprocess and has an essential effect on the performance of the combustion process. In the current study, a kinetic study on auto iginition delaytime is carried out for biomass derived gas combustion. A gas mixture of CO/H2/CO2/CH4/N2 is used to represent the typical composition from a biomass gasification process. The gas mixture is mixed with air under a certain range of operating conditions. A pressure range from 1 – 32 atm and an initial temperature range from 900 K to 1250 K were considered in the current study.The correlation between the ignition delay time and the operating conditions (pressures, initial temperatures and equivalence ratio) was derived for the biomass derived gas based on the kinetic calculations and published experimental data. The empirical correlation was obtained for the gas mixture ofCO/H2/CO2/CH4/N2/air and the gas mixture of CO/H2/O2/Ar. The influence of fuel compositions of the ignition delay time has also been discussed within this study. However, the influence of composition variation shown in the current study was not significant and was difficult to be cross-validated by various experimental data.

1 - 24 of 24
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf