Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Jun
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Natalino, Carlos
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van, Dung pham
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Resource Management in Fog-Enhanced Radio Access Network to Support Real-Time Vehicular Services2017In: Proceedings - 2017 IEEE 1st International Conference on Fog and Edge Computing, ICFEC 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 68-74, article id 8014361Conference paper (Refereed)
    Abstract [en]

    With advances in the information and communication technology (ICT), connected vehicles are one of the key enablers to unleash intelligent transportation systems (ITS). On the other hand, the envisioned massive number of connected vehicles raises the need for powerful communication and computation capabilities. As an emerging technique, fog computing is expected to be integrated with existing communication infrastructures, giving rise to a concept of fog-enhanced radio access networks (FeRANs). Such architecture brings computation capabilities closer to vehicular users, thereby reducing communication latency to access services, while making users capable of sharing local environment information for advanced vehicular services. In the FeRANs service migration, where the service is migrated from a source fog node to a target fog node following the vehicle's moving trace, it is necessary for users to access service as close as possible in order to maintain the service continuity and satisfy stringent latency requirements of real-time services. Fog servers, however, need to have sufficient computational resources available to support such migration. Indeed, a fog node typically has limited resources and hence can easily become overloaded when a large number of user requests arrive, e.g., during peak traffic, resulting in degraded performance. This paper addresses resource management in FeRANs with a focus on management strategies at each individual fog node to improve quality of service (QoS), particularly for real-time vehicular services. To this end, the paper proposes two resource management schemes, namely fog resource reservation and fog resource reallocation. In both schemes, real-time vehicular services are prioritized over other services so that their respective vehicular users can access the services with only one hop. Simulation results show that the proposed schemes can effectively improve one-hop access probability for real-time vehicular services implying low delay performance, even when the fog resource is under heavy load.

  • 2. Maier, Martin
    et al.
    Chowdhury, Mahfuzulhoq
    Rimal, Bhaskar Prasad
    Van, Dung Pham
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    The Tactile Internet: Vision, Recent Progress, and Open Challenges2016In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 54, no 5, p. 138-145Article in journal (Refereed)
    Abstract [en]

    The advent of commercially available remote-presence robots may be the precursor of an age of technological convergence, where important tasks of our everyday life will be increasingly done by robots. A very low round-trip latency in conjunction with ultra-high reliability and essentially guaranteed availability for control communications has the potential to move today's mobile broadband experience into the new world of the Tactile Internet for a race with (rather than against) machines. To facilitate a better understanding of the Tactile Internet, this article first elaborates on the commonalities and subtle differences between the Tactile Internet and the Internet of Things and 5G vision. After briefly reviewing its anticipated impact on society and infrastructure requirements, we then provide an up-to-date survey of recent progress and enabling technologies proposed for the Tactile Internet. Given that scaling up research in the area of future wired and wireless access networks will be essential for the Tactile Internet, we pay particular attention to the latency and reliability performance gains of fiber-wireless (FiWi) enhanced LTE-Advanced heterogeneous networks and their role for emerging cloudlets, mobile-edge computing, and cloud robotics. Finally, we conclude by outlining remaining open challenges for the Tactile Internet.

  • 3.
    Pham Van, Dung
    et al.
    KTH, School of Information and Communication Technology (ICT). Optical Zeitgeist Laboratory, Institut National de la Recherche Scientifique, Montréal, QC H5A 1K6, Canada.
    Rimal, B. P.
    Andreev, S.
    Tirronen, T.
    Maier, M.
    Machine-to-machine communications over FiWi enhanced LTE networks: A power-saving framework and end-to-end performance2016In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 34, no 4, p. 1062-1071, article id 7360869Article in journal (Refereed)
    Abstract [en]

    To cope with the unprecedented acceleration of machine-to-machine (M2M) services over cellular networks, this paper envisions a highly converged network architecture based on the integration of high-capacity and reliable Ethernet fiber-wireless (FiWi) access networks with flexible and cost-effective 4G long term evolution (LTE) technology to support M2M connectivity in an end-to-end fashion, i.e., from air interface to transport (backhaul) network. In such emerging architecture, energy efficiency must be addressed in a comprehensive way, in which both wireless front-end and optical backhaul segments are considered at the same time to maximize the battery life of battery-constrained M2M devices as well as reduce operational expenditures for network operators, while maintaining acceptable network performance. Toward this end, an end-to-end power-saving framework is introduced in this paper that devises a timeout driven discontinuous reception (DRX) mechanism for LTE-enabled M2M devices and a polling-based power-saving mechanism for optical network units (ONUs) to improve the overall energy efficiency. End-to-end performance in terms of energy saving and packet delay is analytically modeled based on a semi-Markov process for the front-end and an M/G/1 queue for the backhaul. The obtained results indicate that the device battery life is significantly prolonged by extending the DRX cycle, whereas the backhaul energy consumption is minimized by incorporating the ONU power-saving modes into the dynamic bandwidth allocation process of the optical backhaul.

  • 4. Rimal, B. P.
    et al.
    Pham Van, Dung
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Ericsson Research, Sweden.
    Maier, M.
    Cloudlet Enhanced Fiber-Wireless Access Networks for Mobile-Edge Computing2017In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 16, no 6, p. 3601-3618, article id 7883946Article in journal (Refereed)
    Abstract [en]

    This paper proposes to enhance capacity-centric fiber-wireless (FiWi) broadband access networks based on data-centric Ethernet technologies with computation- and storage-centric cloudlets to provide reliable cloud services at the edge of FiWi networks and thereby realize the vision of mobile-edge computing (MEC). To reduce offload delay and prolong battery life of edge devices, a novel cloudlet-aware resource management scheme is proposed that incorporates offloading activities into the underlying FiWi dynamic bandwidth allocation process. The whole system is designed in two time division multiple access layers to enhance the network performance. To allow for the efficient coexistence of FiWi and MEC traffic, the offloaded traffic is scheduled outside the FiWi transmission slots. To thoroughly study the scheme's performance, a comprehensive analytical framework is developed that covers a rich set of performance metrics, including packet delay of both FiWi and MEC traffic, response time efficiency, offload gain-overhead ratio, energy efficiency, and battery life. Analytical results demonstrate the feasibility and effectiveness of the cloudlet-enhanced FiWi networks for MEC by employing the proposed solution. Further, we develop an experimental testbed to validate the accuracy of our analytical model via real-world measurements.

  • 5. Rimal, B. P.
    et al.
    Pham Van, Dung
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Maier, M.
    Mobile-edge computing vs. centralized cloud computing in fiber-wireless access networks2016In: Proceedings - IEEE INFOCOM, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 991-996Conference paper (Refereed)
    Abstract [en]

    The advent of Internet of Things and 5G applications renders the need for integration of both centralized cloud computing and emerging mobile-edge computing (MEC) with existing network infrastructures to enhance storage, processing, and caching capabilities in not only centralized but also distributed fashions for supporting both delay-tolerant and mission-critical applications. This paper investigates performance gains of centralized cloud and MEC enabled integrated fiber-wireless (FiWi) access networks. A novel resource management scheme incorporating both centralized cloud and MEC offloading activities into the underlying FiWi dynamic bandwidth allocation process is proposed. An analytical framework is developed to model packet delay, response time efficiency, and gain-offload overhead ratio for both cloud and conventional broadband access traffic. The obtained results demonstrate the feasibility of implementing conventional cloud and MEC in FiWi access networks, while not affecting network performance of broadband access traffic.

  • 6. Rimal, B. P.
    et al.
    Van, Dung Pham
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Maier, M.
    Mobile Edge Computing Empowered Fiber-Wireless Access Networks in the 5G Era2017In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 55, no 2, p. 192-200, article id 7842434Article in journal (Refereed)
    Abstract [en]

    The expected stringent requirements of future 5G networks such as ultra-low latency, user experience continuity, and high reliability will drive the need for highly localized services within RANs in close proximity to mobile subscribers. In light of this, the mobile edge computing (MEC) concept has emerged, which aims to unite telco, IT, and cloud computing to deliver cloud services directly from the network edge. To facilitate better understanding of MEC, this article first discusses its potential service scenarios and identifies design challenges of MEC-enabled networks. Given the importance of scaling up research in the area of network integration and convergence in support of MEC toward 5G, the article explores the possibilities of empowering integrated fiber-wireless (FiWi) access networks to offer MEC capabilities. More specifically, envisioned design scenarios of MEC over FiWi networks for typical RAN technologies (i.e., WLAN, 4G LTE, LTE-A HetNets) are investigated, accounting for both network architecture and enhanced resource management. The performance of MEC over Ethernet-based FiWi networks in terms of delay, response time efficiency, and battery life of edge devices is then analyzed. The obtained results demonstrate the feasibility and effectiveness of the proposed MEC over FiWi concept.

  • 7.
    Van, Dung Pham
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Resource management for optical interconnects in data centre networks2017In: 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2017, article id 7842226Conference paper (Refereed)
    Abstract [en]

    This paper deals with resource management in data centre networks that feature optical interconnects. It first proposes an optical resource management framework as a platform to develop different solutions for multipoint-to-multipoint optical communication systems with a centralized controller. The paper takes optical intra-rack communications as an example application scenario of the framework and studies the intra-rack scheduling (IRS) problem using a theoretical approach. The problem is mapped into the classical open-shop scheduling problem, in which the optical interfaces are viewed as the jobs and the wavelengths used for communication among the interfaces are viewed as the machines. The IRS problem can therefore be solved by adopting the existing preemptive and/or non-preemptive open-shop scheduling algorithms. In a realistic intra-rack communication scenario with non-negligible network reconfiguration time, it is important to understand whether the preemptive or non-preemptive strategy provides better performance under given traffic conditions and system configurations. To address the question, this paper presents a performance analysis that allows to quantitatively compare the two scheduling strategies in terms of packet delay and potential energy savings obtained from sleep mode implementation. Analytical results reveal that the non-preemptive strategy outperforms the preemptive one for typical configurations used in data centre networks. In addition, the tuning and wake-up times of optical transceivers are shown to be key performance-determining factors. The proposed framework and obtained findings are not limited to the considered intra-rack communication scenario, but can be applied to any centralized optical switching systems featuring multipoint-to-multipoint transmissions with non-negligible reconfiguration time.

  • 8.
    Van, Dung pham
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Rimal, B. P.
    Maier, M.
    Fiber optic vs. wireless sensors in energy-efficient integrated FiWi smart grid networks: An energy-delay and TCO comparison2016In: Proceedings - IEEE INFOCOM, IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    This paper aims at designing an ecoconscious future-proof sensor enhanced fiber-wireless (SFiWi) network based on EPON, WLAN, wireless sensor (WS), and fiber optic sensor (FOS) technologies as a shared communications infrastructure for broadband access and smart grids. A total cost of ownership (TCO) model is developed to help utilities decide whether to deploy WSs or FOSs in different scenarios and estimate sensor-related costs. To prolong battery life of wireless devices and maximize the overall energy efficiency, a novel energy conservation scheme for SFiWi networks (ECO-SFiWi) is proposed. ECO-SFiWi designs the whole network in three TDMA layers to enhance network performance, while scheduling network components to sleep outside their transmission slots. A comprehensive energy saving model accounting for both optical backhaul and wireless front-end components and a delay analysis based on M/G/1 queuing are presented. Results reveal that with their extremely long lifetime and ability to sustain in harsh environments, FOSs are superior to WSs when advanced interrogation techniques are deployed to reduce their total cost. ECO-SFiWi achieves more than 89% of energy savings, while maintaining low delay for both broadband and smart grid traffic in typical scenarios. FPGA hardware emulation and analytical results match well verifying the effectiveness of ECO-SFiWi.

  • 9.
    Van, Dung Pham
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Rimal, Bhaskar Prasad
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Monti, Paolo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Maier, Martin
    Power-Saving Methods for Internet of Things over Converged Fiber-Wireless Access Networks2016In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 54, no 11, p. 166-175Article in journal (Refereed)
    Abstract [en]

    The IoT has been emerging as the next big leap in the information and communication technology sector. Providing a unified communication platform to support billions of smart connected devices seamlessly alongside existing voice and Internet services is vitally challenging. This article leverages converged fiber-wireless (FiWi) access networks to design a shared communication infrastructure for supporting both IoT applications and traditional services. Given the paramount importance of energy efficiency in both IoT and access networks, the article discusses the possibilities and potential challenges of designing and implementing power-saving mechanisms to prolong battery life of IoT devices while reducing energy consumption of the optical backhaul network. In-depth technical guidelines are provided through end-to-end power-saving solutions proposed for typical IoT deployment scenarios.

  • 10.
    Van, Dung Pham
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Institut National de la Recherche Scientifique (INRS), Canada.
    Rimal, Bhaskar Prasad
    Maier, Martin
    Valcarenghi, Luca
    Design, Analysis, and Hardware Emulation of a Novel Energy Conservation Scheme for Sensor Enhanced FiWi Networks (ECO-SFiWi)2016In: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 34, no 5, p. 1645-1662Article in journal (Refereed)
    Abstract [en]

    Fiber-wireless sensor networks (Fi-WSNs) composed of a hybrid fiber-wireless (FiWi) network enhanced with sensors will play a key role in supporting machine-to-machine (M2M) communications to enable a wide range of Internet of Things (IoT) applications, of which smart grids represent an important real-world example. This paper explores opportunities of designing an energy-efficient Fi-WSN based on EPON/10G-EPON, WLAN, wireless sensors, and passive fiber optic sensors as a shared communications infrastructure for broadband services and smart grids. A novel energy conservation scheme for sensor enhanced FiWi networks (ECO-SFiWi) is proposed to reduce the overall energy consumption. ECO-SFiWi maximizes energy efficiency by leveraging TDMA to schedule power-saving modes of EPON's optical network units, wireless stations, and wireless sensors and incorporate them into EPON's bandwidth allocation algorithm. To study the performance, a comprehensive energy saving model and a delay analysis of both FiWi traffic and sensor data based on M/G/1 queue modeling are presented. FPGA-based hardware emulation and demonstration are performed to verify the effectiveness of the proposed solution. Results provide deep insights into the tradeoff between energy savings and frame delays. Noticeably, ECO-SFiWi achieves significant amounts of energy saving, while maintaining low delay for FiWi traffic and sensor data under typical deployment scenarios.

  • 11.
    Van, Dung Pham
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Rimal, Bhaskar Prasad
    Maier, Martin
    Valcarenghi, Luca
    ECO-FiWi: An Energy Conservation Scheme for Integrated Fiber-Wireless Access Networks2016In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 15, no 6, p. 3979-3994Article in journal (Refereed)
    Abstract [en]

    Integrated fiber-wireless (FiWi) access networks aim at taking full advantage of the reliability and high capacity of the optical backhaul along with the flexibility, ubiquity, and cost savings of the wireless/cellular front-end to provide broadband services for both mobile and fixed users. In FiWi access networks, energy efficiency issues must be addressed in a comprehensive fashion that takes into account not only wireless front-end but also optical backhaul segments to extend the battery life of wireless devices and allow operators to reduce their OPEX, while not compromising quality of service (QoS). This paper proposes an energy conservation scheme for FiWi networks (ECO-FiWi) that jointly schedules power-saving modes of wireless stations and access points and optical network units to reduce their energy consumption. ECO-FiWi maximizes the overall network performance by leveraging TDMA to synchronize the power-saving modes and incorporate them into the dynamic bandwidth allocation (DBA) process. A comprehensive energy saving model and an M/G/1 queuing-based analysis of downstream and upstream end-to-end frame delays are presented accounting for both backhaul and front-end network segments. Analytical results show that ECO-FiWi achieves significant amounts of energy saving, while preserving upstream delay and incurring a low delay for downstream traffic.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf