Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Hassel, B. I.
    et al.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Berard, P.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Single cube apparatus - Shear properties determination and shear strain variation in natural density gradient materials2009In: ICCM-17 17th International Conference on Composite Materials, 2009Conference paper (Refereed)
    Abstract [en]

    Transversal shear of softwoods was studied with the single cube apparatus (SCA). Full field strain data and FEA were used to validate the device. Once a close to pure shear strain region was confirmed, the relationship between shear strain and radial density gradient was obtained; finally an improved FE model was created.

  • 2.
    Hassel, Ivon
    et al.
    Laboratory of Structural Function, Research Institute for Sustainable Humanosphere, Kyoto University.
    Berard, Pierre
    Laboratory of Sustainable Materials, Research Institute for Sustainable Humanosphere, Kyoto University.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    The single cube apparatus for shear testing: Full-field strain data and finite element analysis of wood in transverse shear2009In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 69, no 7-8, p. 877-882Article in journal (Refereed)
    Abstract [en]

    The design and analysis of wood structures require accurate data for shear properties, where transverse shear in particular has been neglected in the past. The single cube apparatus (SCA) was applied to transverse shear of Norway spruce (Picea Abies), due to the importance of this species in wood structures, such as glulam, and also its allegedly low value of GRT . Full-field strain data and FEA were used to analyze the potential of the method. The presence of a large central region of homogeneous and close to pure shear strain was confirmed. The SCA method is therefore a strong candidate for improved shear test procedures in wood and other materials, where porosity (gripping problems), heterogeneity on mm-scale and polar orthotropy (annual ring curvature) may cause particular difficulties. In contrast to many other shear test studies, the accuracy of the present GRT data is supported by documented large and homogeneous specimen stress- and strain-fields in almost pure shear, direct measurements of strain field, and careful stress analysis based on FEA.

  • 3.
    Hassel, Ivon
    et al.
    Laboratory of Structural Function, Research Institute for Sustainable Humanosphere, Kyoto University.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Functional gradient effects explain the low transverse shear modulus in spruce: Full-field strain data and a micromechanics model2009In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 69, no 14, p. 2491-2496Article in journal (Refereed)
    Abstract [en]

    An important failure mechanism in glulam beams is cracking caused by out-of-plane transverse loads. It has been demonstrated that the low transverse shear modulus G(RT) in spruce contributes to large transverse strain inhomogeneities due to the annual ring structure in combination with shear coupling effects. In the present study, improved understanding of annual ring effects is achieved by the development of a micromechanical model. It relates the functional density gradient in spruce annual rings to shear modulus GRT. The geometrical basis is a hexagonal cell model, and in shear it is demonstrated to deform primarily by cell wall bending. Full-field strain measurements by digital speckle photography (DSP) show very strong correlation with predicted shear strains at the annual ring scale. Predictions are obtained by implementation of the micromechanics model in a finite element (FE) model developed for the single cube apparatus shear specimen. The low GRT of spruce is due to the strong dependence of GRT on relative density rho/rho(s)(G(RT) proportional to (rho/rho(s))(3)). This is particularly important in spruce. Even though average density is typically quite high, the functional gradient structure includes local densities as low as 200 kg/m(3).

  • 4.
    Hergenröder, Björn
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Method to determine the transverse shear modulus (GRT) of softwoods using full field strain measurements in off-axis compressionIn: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840Article in journal (Other academic)
  • 5.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Micromechanics of softwoods in the transverse plane: effects on cell and annual ring scales2008Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Transverse mechanical properties of wood are important in many practial applications and an interesting scientific subject. A very low transverse shear modulus has been identified in spruce, which causes large strain concentrations in wood structures. In this thesis, experimental characterization of local density variations as well as local strain fields are carried out using the SilviScan apparatus and digital speckle photography, respectively. This is combined with micromechanical modeling based on hexagonal wood cells in combination with finite element analysis. Problems addressed include the moduli in the transverse plane, including variations at the scale of individual annual rings. The relative importance of cell wall bending and stretching deformation mechanisms is analysed as a function of wood cell geometry, relative density and direction of loading (radial, tangential and shear). Transverse anisotropy is also analyzed, including its dependency of earlywood and latewood characteristics. The wood cell shape angle variation and density effects are sufficient to explain transverse anisotropy in softwoods (no ray effects), and the influence of earlywood/latewood ratio is explained. As a practical test method for shear modulus measurements, an off-axis compression test with full-field strain determination is proposed. The advantage is a simple fixture and large region of representative strain required for a heterogeneous material such as wood. As an alternative, the single cube apparatus (SCA) for shear tests is evaluated. The SCA is used to determine the shear strain distribution within the annual rings. Based on the density distribution of the shear test specimen and a micromechanics model, a finite element model is developed, and predictions are compared with the measured shear strains. The agreement between predicted and measured shear strains at the annual ring scale are remarkably good. It shows that the low GRT of spruce is due to the low earlywood density and the large cell wall bending deformation resulting from shear loading. Furthermore, it illustrates the need for improved understanding of annual ring scale effects. For example, fairly low transverse global loads will lead to lage local shear strains.

  • 6.
    Modén, Carl S.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Transverse anisotropy in softwoods: Modelling and experiments2006Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Transverse anisotropy is an important phenomenon of practical and scientific interest. Although the presence of ray tissue explains the high radial modulus in many hardwoods, experimental data in the literature shows that this is not the case for pine. It is possible that anisotropy in softwoods may be explained by the cellular structure and associated deformation mechanisms.

    An experimental approach was developed by which local radial modulus in spruce was determined at sub-annual ring scale. Digital speckle photography (DSP) was used, and the density distribution was carefully characterized using x-ray densitometry and the SilviScan apparatus. A unique set of data was generated for radial modulus versus a wide range of densities. This was possible since earlywood density shows large density variations in spruce. Qualitative comparison was made between data and predictions from stretching and bending honeycomb models. The hypothesis for presence of cell wall stretching was supported by data.

    A model for wood was therefore developed where both cell wall bending and stretching are included. The purpose was a model for predictions of softwood moduli over a wide range of densities. The relative importance of the deformation mechanisms was investigated in a parametric study. A two-phase model was developed and radial and tangential moduli were predicted. Comparison with experimental data showed good agreement considering the nature of the model (density is the only input parameter). Agreement is much better than for a regular honeycomb model. According to the model, cell wall bending dominates at both low and high densities during tangential loading. In radial loading, cell wall stretching dominates at higher densities.

  • 7.
    Modén, Carl S.
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    A two-phase annual ring model of transverse anisotropy in softwoods2008In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 68, no 14, p. 3020-3028Article in journal (Refereed)
    Abstract [en]

    Transverse anisotropy in softwoods is an important phenomenon of both scientific and industrial interest. Simple one-phase hexagonal honeycomb cell models for transverse moduli of softwoods are based on cell wall bending as the only deformation mechanism. In the present study, a two-phase annual ring model is developed and includes both cell wall bending and stretching as deformation mechanisms. The proportion of cell wall bending and stretching for different cases is analysed and the importance of stretching is confirmed. A two-phase annual ring model is presented based on fixed densities for earlywood and latewood. Such a model is motivated by the large difference in density between earlywood and latewood layers. Two-phase model predictions show much better agreement with experimental data than predictions from a one-phase model. Radial modulus is dominated by bending at low density and by stretching at high density. For tangential modulus, bending is more important at all densities.

  • 8.
    Modén, Carl S.
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Elastic deformation mechanisms of softwoods in radial tension: Cell wall bending or stretching?2008In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 62, no 5, p. 562-568Article in journal (Refereed)
    Abstract [en]

    Radial softwood modulus ER is typically twice as high as the tangential modulus ET. The reason for this is unclear, although cell geometry is likely to contribute. The established hexagonal honeycomb model for prediction of ER is based on a cell wall bending mechanism only. If cell wall stretching also takes place, the dependence of ER on relative density will be different. If experimental data for ER as a function of relative density show deviations from cell wall bending predictions, this may indicate the presence of cell wall stretching. A SilviScan apparatus is used to measure density distribution. A procedure by means of digital speckle photography is then developed for measurements of local ER within the annual rings of spruce. Comparison is made between experimental data and the two expected density dependencies from cell wall bending and from stretching. The hypothesis of cell wall stretching as a contributing mechanism is supported based on the observed linear dependence of ER over a wide density range.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf