Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carosio, Federico
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Cuttica, Fabio
    Medina, Lilian
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Clay nanopaper as multifunctional brick and mortar fire protection coating: Wood case study2016In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 93, p. 357-363Article in journal (Refereed)
    Abstract [en]

    Abstract Wood is one of the most sustainable, esthetically pleasing and environmentally benign engineering materials, and is often used in structures found in buildings. Unfortunately, the fire hazards related to wood are limiting its application. The use of transparent cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure, is proposed as a sustainable and efficient fire protection coating for wood. Fire performance was assessed by cone calorimetry. When exposed to the typical 35 kW/m2 heat flux of developing fires, the time to ignition of coated wood samples increased up to about 4 1/2 min, while the maximum average rate of heat emission (MARHE) was decreased by 46% thus significantly reducing the potential fire threat from wood structures.

  • 2.
    Carosio, Federico
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Politecnico di Torino, Italy.
    Kochumalayil, Joby
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fina, A.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Extreme Thermal Shielding Effects in Nanopaper Based on Multilayers of Aligned Clay Nanoplatelets in Cellulose Nanofiber Matrix2016In: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 3, no 19, article id 1600551Article in journal (Refereed)
  • 3.
    Carosio, Federico
    et al.
    Politecn Torino, I-15121 Alessandria, Italy.
    Kochumalayil, Jose
    Cuttica, F.
    Camino, G.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Oriented Clay Nanopaper from Biobased Components Mechanisms for Superior Fire Protection Properties2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 10, p. 5847-5856Article in journal (Refereed)
    Abstract [en]

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric Materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to Other clay nanocomposites and fiber composites. The Corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) Materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/ MTM interactions for char formation.

  • 4.
    Koklukaya, Oruc
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Carosio, Federico
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tailoring flame-retardancy and strength of papers via layer-by-layer treatment of cellulose fibers2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 4, p. 2691-2709Article in journal (Refereed)
    Abstract [en]

    The layer-by-layer (LbL) technology was used to adsorb polyelectrolyte multilayers consisting of cationic polyethylenimine (PEI) and anionic sodium hexametaphosphate (SHMP) onto cellulose fibers in order to enhance the flame-retardancy and tensile strength of paper sheets made from these fibers. The fundamental effect of PEI molecular mass on the build-up of the multilayer film was investigated using model cellulose surfaces and a quartz crystal microbalance technique. The adsorption of a low (LMw) and a high molecular weight (HMw) PEI onto cellulose fibers and carboxymethylated (CM) cellulose fibers was investigated using polyelectrolyte titration. The fibers were consecutively treated with PEI and SHMP to deposit 3.5 bilayers (BL) on the fiber surfaces, and the treated fibers were then used to prepare sheets. In addition, a wet-strength paper sheet was prepared and treated with the same LbL coatings. Thermal gravimetric analysis of LbL-treated fibers showed that the onset temperature for cellulose degradation was lowered and that the amount of residue at 800 °C increased. A horizontal flame test and a vertical flame test were used to evaluate the combustion behavior of the paper sheets. Papers prepared from both cellulose fibers and CM-cellulose fibers treated with HMw-PEI/SHMP LbL-combination self-extinguished in a horizontal configuration despite the rather low amounts of adsorbed polymer which form very thin films (wet thickness of ca. 17 nm). The tensile properties of handsheets showed that 3.5 BL of HMw-PEI and SHMP increased the stress at break by 100% compared to sheets prepared from untreated cellulose fibers.

  • 5.
    Medina, Lilian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ansari, Farhan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    Salajkova, Michaela
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Nanocomposites from Clay, Cellulose Nanofibrils, and Epoxy with Improved Moisture Stability for Coatings and Semi-Structural Applications2019In: ACS Applied Nano Materials, E-ISSN 2574-0970Article in journal (Refereed)
    Abstract [en]

    A new type of high reinforcement content clay-cellulose-thermoset nanocomposite was proposed, where epoxy precursors diffused into a wet porous clay-nanocellulose mat, followed by curing. The processing concept was scaled to > 200 µm thickness composites, the mechanical properties were high for nanocomposites and the materials showed better tensile properties at 90% RH compared with typical nanocellulose materials. The nanostructure and phase distributions were studied using transmission electron microscopy; Young’s modulus, yield strength, ultimate strength and ductility were determined as well as moisture sorption, fire retardancy and oxygen barrier properties. Clay and cellulose contents were varied, as well as the epoxy content. Epoxy had favorable effects on moisture stability, and also improved reinforcement effects at low reinforcement content. More homogeneous nano- and mesoscale epoxy distribution is still required for further property improvements. The materials constitute a new type of three-phase nanocomposites, of interest as coatings, films and as laminated composites for semi-structural applications.

  • 6.
    Medina, Lilian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Carosio, Federico
    Politecnico di Torino.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Recyclable Nanocomposite Foams of Poly(vinyl alcohol), Clay and Cellulose Nanofibrils - Mechanical Properties and Flame RetardancyManuscript (preprint) (Other academic)
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf