Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Behi, Hamidreza
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Investigation of PCM-assisted heat pipe for electronic cooling2017In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 127, p. 1132-1142Article in journal (Refereed)
    Abstract [en]

    Today, higher-power computer chips are available, but they generate too much heat that irreparably damages inside components. In this paper, a horizontal phase change material (PCM)-assisted heat pipe system for electronic cooling was introduced as a potential solution to this problem. A computational fluid dynamic model was developed and validated to assist the investigation. A surface temperature profile along the heat pipe was used to validate the CFD model. The liquid fraction and temperature distribution of PCM were reported during the charging process at different input powers. It was found that the PCM-assisted heat pipe provided up to 86.7% of the required cooling load in the working power range of 50-80 W. Contribution of PCM was calculated to be 11.7% of the provided cooling load and preventing heat dissipation.

  • 2.
    Behi, Mohammadreza
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia..
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia..
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Hamidreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Evaluation of a novel solar driven sorption cooling/heating system integrated with PCM storage compartment2018In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 164, p. 449-464Article in journal (Refereed)
    Abstract [en]

    Recently the interest in solar thermal cooling has been growing for Air Conditioning (AC) applications. This paper presents an applied experimental and numerical evaluation of a novel triple-state sorption solar cooling module. The performance of a LiCl-H2O based sorption module (SM) for cooling/heating system with integration of an external energy storage has been evaluated. The dynamic behavior of the SM, which can be driven by solar energy, is presented. Two PCM assisted configurations of the SM have been studied herein; (i) PCM assisted sorption module for cooling applications (ii) PCM assisted sorption module for heating applications. Initially, an experimental investigation was carried out to evaluate the charging/discharging process of the SM without external energy storage. Secondly, the initial experimental configuration was modeled with a PCM integrated storage compartment. The PCM storage compartment was connected to the Condenser/Evaporator (C/E) of the SM. The temporal history of the sorption module's C/E and PCM storage, the cyclic and average performance in terms of cooling/heating capacity, cooling/heating COP, and the total efficiency were experimentally and numerically investigated. Furthermore, PCM charging/discharging power rate and solidification/melting process of the PCM in the integrated storage compartment to the SM were predicted by the model.

  • 3.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, H.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Shelf stability of nanofluids and its effect on thermal conductivity and viscosity2013In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 24, no 10, p. 105301-Article in journal (Refereed)
    Abstract [en]

    This study proposes a method and apparatus to estimate shelf stability of nanofluids. Nanofluids are fabricated by dispersion of solid nanoparticles in base fluids, and shelf stability is a key issue for many practical applications of these fluids. In this study, shelf stability is evaluated by measuring the weight of settled solid particles on a suspended tray in a colloid versus time and correlated with the performance change of some nanofluid systems. The effects of solid particle concentration and bath sonication time were investigated for selected nanofluids. The results show the applicability of this simple method and the apparatus to evaluate nanofluid shelf stability. Furthermore, it shows that Stokes' law is not valid for determining the settling time of the tested nanoparticles probably due to their complicated shape and presence of surface modifiers. The effect of shelf stability on thermal conductivity and viscosity was illustrated for some nanofluids. Experimental results show that water-based Al2O3 nanofluids have quite good shelf stability and can be good candidates for industrial applications.

  • 4.
    Bitaraf Haghighi, Ehsan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Nikkam, Nader
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Anwar, Zahid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lumbreras, Itziar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mirmohammadi, Seyed A.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Poth, Heiko
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Cooling performance of nanofluids in a small diameter tube2013In: Experimental Thermal and Fluid Science, ISSN 0894-1777, E-ISSN 1879-2286, Vol. 49, p. 114-122Article in journal (Refereed)
    Abstract [en]

    This article reports convective single-phase heat transfer performance in laminar flow for some selected nanofluids (NFs) in an open small diameter test section. A 0.50 mm inner diameter, 30 cm long stainless steel test section was used for screening single phase laminar convective heat transfer with water and five different water based NFs. Tested NFs were; Al2O3 (two types), TiO2 (two types) and CeO2 (one type), all 9 wt.% particle concentration. The effective thermal conductivity of the NFs were measured with Transient Plane Source (TPS) method and viscosity were measured with a rotating coaxial cylindrical viscometer. The obtained experimental results for thermal conductivity were in good agreement with the predicted values from Maxwell equation. The local Shah correlation, which is conventionally used for predicting convective heat transfer in laminar flow in Newtonian fluids with constant heat flux boundary condition, was shown to be valid for NFs. Moreover, the Darcy correlation was used to predict the friction factor for the NFs as well as for water. Enhancement in heat transfer for NFs was observed, when compared at equal Reynolds number, as a result of higher velocity or mass flow rate of the NFs at any given Reynolds number due to higher viscosity for NFs. However, when compared at equal pumping power no or only minor enhancement was observed.

  • 5.
    Haghighi, Ehsan Bitaraf
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Anwar, Zahid
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Lumbreras, Itziar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Mirmohammadi, Seyed Aliakbar
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Screening Single Phase Laminar Convective Heat Transfer of Nanofluids in a Micro-tube2012In: Journal of Physics, Conference Series, ISSN 1742-6588, E-ISSN 1742-6596, Vol. 395, article id 012036Article in journal (Refereed)
    Abstract [en]

    Nano scale solid particles dispersed in base fluids are a new class of engineered colloidal solutions called nanofluids. Several studies reported enhancement of heat transfer by using nanofluids. This article reports convective single-phase heat transfer coefficients in an open 30 cm long, 0.50 mm internal diameter stainless steel test section. The setup is used for screening single phase laminar convective heat transfer with water and three different nanofluids: water based Al2O3, ZrO2, and TiO2 (all with 9 wt% of particles). A syringe pump with adjustable pumping speed is used to inject fluids into the test section. Thirteen T-type thermocouples are attached on the outer surface of the test section to record the local wall temperatures. Furthermore, two T-type thermocouples are used to measure inlet and outlet fluid temperatures. A DC power supply is used to heat up the test section and a differential pressure transducer is used to measure the pressure drop across the tube. Furthermore, the effective thermal conductivities of these nanofluids are measured using the Transient Plane Source (TPS) method at a temperature range of 20 - 50 degrees C. The experimental average values of heat transfer coefficients for nanofluids are compared with water. Enhancement in heat transfer of nanofluids is observed only when compared at constant Reynolds number (Due to higher viscosity for nanofluids, higher velocity or mass flow rate is required for nanofluids to reach the same Reynolds number). The other methods of comparison: equal mass flow rate, volume flow rate, pressure drop and pumping power did not show any augmentation of the heat transfer coefficient for the tested nanofluids compared to water.

  • 6.
    Mirmohammadi, Seyed Aliakbar
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Ghanbarpour, Morteza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Cooling performance study of a novel heat exchanger in an absorption system2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 180, p. 1001-1012Article in journal (Refereed)
    Abstract [en]

    The paper is focusing on a shell and plate heat exchanger of a novel absorption refrigeration system. The system is composed of two vacuum vessels connected together with a steam channel and one heat exchanger is located in each vessel. The first heat exchanger is called reactor where working fluid and salt exist and the second heat exchanger or evaporator/condenser (C/E) is where only water exists. The propylene glycol-based (PG) heat transfer fluid is used on the shell side of both heat exchangers as the media to exchange the heat between boilers and reactor in one vessel and between cold environment and condenser/evaporator in another vessel. An experimental test rig was built to investigate the performance of the evaporator/condenser heat exchanger. Then, a three-dimensional (3D) Computational Fluid Dynamics (CFD) model was developed. The experimental result was then used to validate the numerical model developed by using Ansys/Fluent software. A parametric study has been intended to find a more appropriate design for the heat exchanger in order to increase heat transfer performance. Results of the parametric study demonstrated that the cooling performance is doubled by increasing the diameter of the plate from 0.14 m to 0.2 m. In addition, to obtain the maximum heat transfer performance, Reynolds number and distance between plates should be 9 and 0.5 m, respectively. Two correlations have been developed for the outlet temperature and cooling power of the heat exchanger which are functions of heat transfer coefficient. The results of this study can be of vital importance for improving the cooling power of the system, remarkably.

  • 7.
    Nikkam, Nader
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Bitaraf Haghigh, Ehsan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Experimental study on preparation and base liquid effect on thermo-physical and heat transport characteristics of α-SiC nanofluids2014In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 55, p. 38-44Article in journal (Refereed)
    Abstract [en]

    Nanostructured solid particles dispersed in a base liquid are a new class of nano-engineeredcolloidal solutions, defined with a coined name of nanofluids (NFs). These fluids have shownpotential to enhance heat transfer characteristics of conventional base liquids utilized in heattransfer application. We recently reported on the fabrication and thermo-physical propertyevaluation of SiC NFs systems, containing SiC particles with different crystal structure. In thisstudy, our aim is to investigate the heat transfer characteristics of a particular α-SiC NF withrespect to the effect of α-SiC particle concentration and different base liquids on the thermophysicalproperties of NFs. For this purpose, a series of NFs with various α-SiC NPsconcentration of 3, 6 and 9wt% were prepared in different base liquids of distilled water (DW)and distilled water/ethylene glycol mixture (DW/EG). Their thermal conductivity (TC) andviscosity were evaluated at 20 oC. NF with DW/EG base liquid and 9wt% SiC NPs loadingexhibited the best combination of thermo-physical properties, which was therefore selected forheat transfer coefficient (HTC) evaluation. Finally, HTC tests were performed and compared indifferent criteria, including equal Reynolds number, equal mass flow rate and equal pumpingpower for a laminar flow regime. The results showed HTC enhancement of NF over the baseliquid for all evaluation criteria; 13% at equal Reynolds number, 8.5% at equal volume flow and5.5% at equal pumping power. Our findings are among the few studies in the literature where theheat transfer enhancement for the NFs over its base liquid is noticeable and based on a realistic situation.

  • 8. Nikkam, Nader
    et al.
    Saleemi, Mohsin
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Behi, Mohammadreza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmatollah
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Toprak, Muhammet S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Experimental investigation on the effect of SiO2 secondary phase on thermo-physical properties of SiC nanofluids2017In: International Communications in Heat and Mass Transfer, ISSN 0735-1933, E-ISSN 1879-0178, Vol. 87, p. 164-168Article in journal (Refereed)
    Abstract [en]

    Nanofluids (NFs), wherein solid nanoparticles (NPs) are dispersed in traditional heat exchange fluids, are recognized for improving the performance of traditional fluids by enhancing their thermal conductivity (TC). The presence of impurities or undesired phases in commercial NPs may influence the thermo-physical properties of NFs including TC and viscosity, which makes it difficult to understand the real effect of NPs on heat transport characteristics of NFs. Moreover, the presence of these impurities in commercial NPs is unavoidable and their removal from commercial NPs with no negative impact on composition of NPs is challenging. To study the impact of impurities on thermo-physical properties of NFs a systematic experimental work was performed using commercial alpha-SiC and SiO2 NPs as the secondary phase as it commonly co-exists in commercial SiC batches. For this purpose, a series of NFs containing 9 wt% of alpha-SiC/SiO2 NP mixture with different content of SiO2 NPs from 5 to 50% were fabricated and investigated. The results show that as the undesired impurity phase (SiO2) increases, TC of NFs decreases slightly while viscosity increases dramatically. This may be a sound path to tuning the viscosity of the NFs while the achieved high TC is mildly influenced by the secondary phase.

  • 9.
    Saleemi, Mohsin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Yakhshi Tafti, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Johansson, M.
    Jacquot, A.
    Jägle, M.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Chemical synthesis of iron antimonide (FeSb2) and its thermoelectric propertiesManuscript (preprint) (Other academic)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf