Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Forslund, Ola Kenji
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Andreica, D.
    Sassa, Y.
    Nozaki, H.
    Umegaki, I.
    Nocerino, Elisabetta
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Jonsson, Viktor
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Tjernberg, Oscar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Guguchia, Z.
    Shermadini, Z.
    Khasanov, R.
    Isobe, M.
    Takagi, H.
    Ueda, Y.
    Sugiyama, J.
    Månsson, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Magnetic phase diagram of K 2 Cr 8 O 16 clarified by high-pressure muon spin spectroscopy2019In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, no 1, article id 1141Article in journal (Refereed)
    Abstract [en]

    The K 2 Cr 8 O 16 compound belongs to a series of quasi-1D compounds with intriguing magnetic properties that are stabilized through a high-pressure synthesis technique. In this study, a muon spin rotation, relaxation and resonance (μ + SR) technique is used to investigate the pressure dependent magnetic properties up to 25 kbar. μ + SR allows for measurements in true zero applied field and hereby access the true intrinsic material properties. As a result, a refined temperature/pressure phase diagram is presented revealing a novel low temperature/high pressure (p C1 = 21 kbar) transition from a ferromagnetic insulating to a high-pressure antiferromagnetic insulator. Finally, the current study also indicates the possible presence of a quantum critical point at p C2 ~ 33 kbar where the magnetic order in K 2 Cr 8 O 16 is expected to be fully suppressed even at T = 0 K.

  • 2.
    Horio, M.
    et al.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Hauser, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Sassa, Y.
    Uppsala Univ, Dept Phys & Astron, SE-75121 Uppsala, Sweden..
    Mingazheva, Z.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Sutter, D.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Kramer, K.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Cook, A.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Nocerino, Elisabetta
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Forslund, Ola Kenji
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Tjernberg, Oscar
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Kobayashi, M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Chikina, A.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Schroter, N. B. M.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Krieger, J. A.
    Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland.;Swiss Fed Inst Technol, Lab Festkorperphys, CH-8093 Zurich, Switzerland..
    Schmitt, T.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Strocov, V. N.
    Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland..
    Pyon, S.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takayama, T.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Takagi, H.
    Univ Tokyo, Dept Adv Mat, Kashiwa, Chiba 2778561, Japan..
    Lipscombe, O. J.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Hayden, S. M.
    Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England..
    Ishikado, M.
    CROSS, Tokai, Ibaraki 3191106, Japan..
    Eisaki, H.
    Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Tsukuba 3058568, Japan..
    Neupert, T.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Månsson, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Matt, C. E.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland.;Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.;Harvard Univ, Dept Phys, Cambridge, MA 02138 USA..
    Chang, J.
    Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland..
    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 7, article id 077004Article in journal (Refereed)
    Abstract [en]

    We present a soft x-ray angle-resolved photoemission spectroscopy study of overdoped high-temperature superconductors. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No k(z) dispersion is observed along the nodal direction, whereas a significant antinodal k(z) dispersion is identified for La-based cuprates. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2-xSrxCuO4 cannot be assigned to the van Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat.

  • 3.
    Kobayashi, Shintaro
    et al.
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi 4648603, Japan.;SPring 8, Japan Synchrotron Radiat Res Inst, 1-1-1 Kouto, Sayo 6795198, Japan..
    Katayama, Naoyuki
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi 4648603, Japan..
    Manjo, Taishun
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi 4648603, Japan..
    Ueda, Hiroaki
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan..
    Michioka, Chishiro
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan..
    Sugiyama, Jun
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan.;CROSS Neutron Sci & Technol Ctr, Tokai, Ibaraki 3191106, Japan..
    Sassa, Yasmine
    Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.;Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden..
    Forslund, Ola Kenji
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Månsson, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Yoshimura, Kazuyoshi
    Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan.;Kyoto Univ, Res Ctr Low Temp & Mat Sci, Kyoto 6068501, Japan..
    Sawa, Hiroshi
    Nagoya Univ, Grad Sch Engn, Dept Appl Phys, Nagoya, Aichi 4648603, Japan..
    Linear Trimer Formation with Antiferromagnetic Ordering in 1T-CrSe2 Originating from Peierls-like Instabilities and Interlayer Se-Se Interactions2019In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 58, no 21, p. 14304-14315Article in journal (Refereed)
    Abstract [en]

    Anomalous successive structural transitions in layered 1T-CrSe2 with an unusual Cr4+ valency were investigated by synchrotron X-ray diffraction. 1T-CrSe2 exhibits dramatic structural changes in in-plane Cr-Cr and interlayer Se-Se distances, which originate from two interactions: (i) in-plane Cr-Cr interactions derived from Peierls-like trimerization instabilities on the orbitally assisted one-dimensional chains and (ii) interlayer Se-Se interactions through p-p hybridization. As a result, 1T-CrSe2 has the unexpected ground state of an antiferromagnetic metal with multiple Cr linear trimers with three-center-two-electron sigma bonds. Interestingly, partial substitution of Se for S atoms in 1T-CrSe2 changes the ground state from an antiferromagnetic metal to an insulator without long-range magnetic ordering, which is due to the weakening of interlayer interactions between anions. The unique low-temperature structures and electronic states of this system are determined by the competition and cooperation of in-plane Cr-Cr and interlayer Se-Se interactions.

  • 4.
    Sassa, Y.
    et al.
    Uppsala Univ, Dept Phys & Astron, Box 530, S-75121 Uppsala, Sweden.;Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland..
    Månsson, Martin
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Forslund, Ola K
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Tjernberg, Oscar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Pomjakushin, V.
    Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland..
    Ofer, O.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Ansaldo, E. J.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Brewer, J. H.
    TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada..
    Umegaki, I.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Higuchi, Y.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Ikedo, Y.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan.;KEK, Muon Sci Lab, Tsukuba, Ibaraki 3050801, Japan..
    Nozaki, H.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Harada, M.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    Watanabe, I.
    RIKEN Nishina Ctr, Adv Meson Sci Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan..
    Sakurai, H.
    Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan..
    Sugiyama, J.
    Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi 4801192, Japan..
    The metallic quasi-1D spin-density-wave compound NaV2O4 studied by angle-resolved photoelectron spectroscopy2018In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 224, p. 79-83Article in journal (Refereed)
    Abstract [en]

    Angle-resolved photoelectron spectroscopy has been used to follow the valence band and near Fermi edge electronic band structure in the quasi-1D compound NaV2O4. In this current study we have acquired the very first high-quality, high-resolution ARPES data from this material. Our data clearly reveal two distinct dispersive bands that cross the Fermi level at different k(F). This is a clear signature that the electronic properties of this material is affected by the presence of a mixed valence state on the different vanadium chains and possibly also the low-temperature magnetic spin order.

  • 5. Sugiyama, J.
    et al.
    Umegaki, I.
    Matsumoto, M.
    Miwa, K.
    Nozaki, H.
    Higuchi, Y.
    Noritake, T.
    Forslund, Ola Kenji
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Månsson, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Cottrell, S. P.
    Koda, A.
    Ansaldo, E. J.
    Brewer, J. H.
    Desorption reaction in MgH 2 studied with in situ μ + SR2019In: Sustainable Energy and Fuels, ISSN 2398-4902, Vol. 3, no 4, p. 956-964Article in journal (Refereed)
    Abstract [en]

    In order to study the mechanism determining the desorption temperature (T d ) of hydrogen storage materials, we have measured positive muon spin rotation and relaxation (μ + SR) in MgH 2 over a wide temperature range including its T d . The pressure in the sample cell due to desorbed H 2 was measured in parallel with the μ + SR measurements under static conditions. Such in situ μ + SR measurements revealed that hydrogen starts to diffuse in MgH 2 well below T d . This indicates the important role of hydrogen diffusion in accelerating the desorption reaction by removing the reaction product, i.e. H 2 , from the reaction system.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf