Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Chouhan, Dimple
    et al.
    Thatikonda, Naresh
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Nilebäck, Linnea
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Widhe, Mona
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Hedhammar, My
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Mandal, Biman B.
    Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 28, s. 23560-23572Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silk is considered to be a potential biomaterial for a wide number of biomedical applications. Silk fibroin (SF) can be retrieved in sufficient quantities from the cocoons produced by silkworms. While it is easy to formulate into scaffolds with favorable mechanical properties, the natural SF does not contain bioactive functions. Spider silk proteins, on the contrary, can be produced in fusion with bioactive protein domains, but the recombinant procedures are expensive, and large-scale production is challenging. We combine the two types of silk to fabricate affordable, functional tissue-engineered constructs for wound-healing applications. Nanofibrous mats and microporous scaffolds made of natural silkworm SF are used as a bulk material that are top-coated with the recombinant spider silk protein (4RepCT) in fusion with a cell-binding motif, antimicrobial peptides, and a growth factor. For this, the inherent silk properties are utilized to form interactions between the two silk types by self-assembly. The intended function, that is, improved cell adhesion, antimicrobial activity, and growth factor stimulation, could be demonstrated for the obtained functionalized silk mats. As a skin prototype, SF scaffolds coated with functionalized silk are cocultured with multiple cell types to demonstrate formation of a bilayered tissue construct with a keratinized epidermal layer under in vitro conditions. The encouraging results support this strategy of fabrication of an affordable bioactive SF-spider silk-based biomaterial for wound dressings and skin substitutes.

  • 2.
    Horak, Josef
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Jansson, Ronnie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Dev, Apurba
    Uppsala Univ, Ångström Lab, Solid State Elect, Uppsala Box 534, SE-75121 Uppsala, Sweden..
    Nilebäck, Linnea
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Behnam, Kiarash
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Linnros, Jan
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Hedhammar, My
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Protein Engineering.
    Recombinant Spider Silk as Mediator for One-Step, Chemical-Free Surface Biofunctionalization2018Ingår i: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 28, nr 21, artikel-id 1800206Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A unique strategy for effective, versatile, and facile surface biofunctionalization employing a recombinant spider silk protein genetically functionalized with the antibody-binding Z domain (Z-4RepCT) is reported. It is demonstrated that Z-silk can be applied to a variety of materials and platform designs as a truly one-step and chemical-free surface modification that site specifically captures antibodies while simultaneously reducing nonspecific adsorption. As a model surface, SiO2 is used to optimize and characterize Z-silk performance compared to the Z domain immobilized by a standard silanization method. First, Z-silk adsorption is investigated and verified its biofunctionality in a long-term stability experiment. To assess the binding capacity and protein-protein interaction stability of Z-silk, the coating is used to capture human antibodies in various assay formats. An eightfold higher binding capacity and 40-fold lower detection limit are obtained in the immunofluorescence assay, and the complex stability of captured antibodies is shown to be improved by a factor of 20. Applicability of Z-silk to functionalize microfluidic devices is demonstrated by antibody detection in an electrokinetic microcapillary biosensor. To test Z-silk for biomarker applications, real-time detection and quantification of human immunoglobulin G are performed in a plasma sample and C1q capture from human serum using an anti-C1q antibody.

  • 3.
    Nilebäck, Linnea
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Expanded knowledge on silk assembly for development of bioactive silk coatings2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Silke är ett fascinerande naturmaterial som består av proteiner som genom självorganisation och strukturella omvandlingar bildar ett av de starkaste materialen man känner till. Eftersom det är proteinbaserat, tåligt och elastiskt har det många egenskaper som gör det lämpligt som strukturell bas för vävnadsrekonstruktion. Naturliga silkesproteiner är komplexa och därmed svåra att producera syntetiskt. Därför har partiella silkesproteiner designats för produktion i heterologa värdceller såsom uttrycksstammar av Escherichia coli. Denna avhandling presenterar studier av egenskaperna hos det partiella spindelsilkesproteinet 4RepCT och dess självorganisation, samt beskriver hur bioaktiva silkesbeläggningar kan prepareras och användas. Fokus har varit på utveckling av beläggningar till implantatytor för att förebygga infektioner samt främja interaktioner med celler.

    I Artikel I undersöktes de inneboende egenskaperna för de två proteindelarna 4Rep och CT samt deras bidrag till självorganisationsprocessen, genom att studera dem enskilt, i en blandning (4Rep+CT) och som fusionsprotein (4RepCT). Resultaten visar att självorganisation sker både vid interfasen mellan vätska och luft, och mellan vätska och fast yta. CT når interfaserna tidigt men omvandlas inte på egen hand till de β-flak som är karaktäristiska för silke. 4Rep adsorberar till interfaserna i hög hastighet och påvisar ett omfattande bildande av intermolekylära interaktioner, även om detta sker oorganiserat. Kovalent koppling mellan 4Rep och CT, som håller de två silkesdelarna nära, som i 4RepCT, visades vara nödvändigt för att uppnå både ombildning till strukturer med högt innehåll av β-flak och en topografi bestående av nanofibriller.

    Upptäckten att 4RepCT bildar fibrillära beläggningar genom självorganisation på fasta ytor kan vara användbart för olika tillämpningar, till exempel för att förbättra implantatytor. Ytbeläggningsmetoden utvärderades i Artikel II, där det visades att silkesbeläggningarna var kemiskt stabila och även kunde göras av silkesproteiner som på genetisk nivå hade fuserats med ytterligare peptidmotiv. Silke med ett cell-bindande motiv (FN-silke) och en antimikrobiell peptid (Mag-silke) kunde genom självorganisation bilda beläggningar på titan, rostfritt stål och hydroxyapatit, vilka är vanliga implantatmaterial. Fibroblaster och endotelceller kunde odlas på beläggningar av FN-silke och visade god tillväxt. Slutligen utvärderades också Mag-silkets förmåga att förebygga adhesion av Staphylococcus aureus.

    I Artikel III användes silke från silkesmaskar för att konstruera material i tre olika format som lämpar sig för sårvård. Mikroporösa material, mattor gjorda med elektrospinning, och tunna beläggningar av silkesmasksilke fick ytbeläggningar av 4RepCT. Därmed erhöll de funktionella egenskaper via 4RepCT i fusion med ett cell-bindande motiv (FN-silke), en antikroppsbindande domän (Z-silke) eller ett enzym (Xyl-silke). Detta visar på en mångsidig metod för funktionalisering av material i olika format med bioaktiva motiv och domäner.

    Arbetet i Artikel IV syftade till att utveckla bi-funktionella silkesbeläggningar för att främja osseointegrering och förebygga adhesion av bakterier på ortopediska implantat och tandimplantat. Beläggningar av vanligt silke (4RepCT) och FN-silke erhöll nya funktioner genom att använda transpeptidaset Sortas A till att katalysera konjugering med endolysinerna PlySs2 eller SAL-1, alternativt enzymet Dispersin B som kan dispergera biofilmer. De erhållna beläggningarna resulterade i reducerad adhesion av S. aureus jämfört med vanligt silke och FN-silke. Dessutom kunde osteosarkomceller binda in till och visade god proliferation på beläggningar av FN-silke även efter konjugering med enzymerna.

    Sammantaget visar arbetet i den här avhandlingen att silkesbeläggningar av 4RepCT är lovande som bas för att konstruera bioaktiva ytor. Beläggningarna kan användas på många olika ytor, och de bioaktiva beläggningar som har utvecklats inom detta arbete har potential inom sårvårdstillämpningar och förebyggande åtgärder mot infektioner associerade med biomaterial.

  • 4.
    Nilebäck, Linnea
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Arola, Suvi
    Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16100, FI-00076 Aalto, Finland..
    Kvick, Mathias
    AlbaNova Univ Ctr, Spiber Technol AB, S-10691 Stockholm, Sweden..
    Paananen, Arja
    VTT Tech Res Ctr Finland Ltd, Tietotie 2, FI-02150 Espoo, Finland..
    Linder, Markus B.
    Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16100, FI-00076 Aalto, Finland..
    Hedhammar, My
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Interfacial Behavior of Recombinant Spider Silk Protein Parts Reveals Cues on the Silk Assembly Mechanism2018Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, nr 39, s. 11795-11805Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanism of silk assembly, and thus the cues for the extraordinary properties of silk, can be explored by studying the simplest protein parts needed for the formation of silk-like materials. The recombinant spider silk protein 4RepCT, consisting of four repeats of polyalanine and glycine-rich segments (4Rep) and a globular C-terminal domain (CT), has previously been shown to assemble into silk-like fibers at the liquid-air interface. Herein, we study the interfacial behavior of the two parts of 4RepCT, revealing new details on how each protein part is crucial for the silk assembly. Interfacial rheology and quartz crystal microbalance with dissipation show that 4Rep interacts readily at the interfaces. However, organized nanofibrillar structures are formed only when 4Rep is fused to CT. A strong interplay between the parts to direct the assembly is demonstrated. The presence of either a liquid-air or a liquid-solid interface had a surprisingly similar influence on the assembly.

  • 5.
    Nilebäck, Linnea
    et al.
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Chouhan, Dimple
    Jansson, Ronnie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Widhe, Mona
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Mandal, Biman B.
    Hedhammar, My
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Silk-Silk Interactions between Silkworm Fibroin and Recombinant Spider Silk Fusion Proteins Enable the Construction of Bioactive Materials2017Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 37, s. 31634-31644Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Natural silk is easily accessible from silkworms and can be processed into different formats suitable as biomaterials and cell culture matrixes. Recombinant DNA technology enables chemical-free functionalization of partial silk proteins through fusion with peptide motifs and protein domains, but this constitutes a less cost-effective production process. Herein, we show that natural silk fibroin (SF) can be used as a bulk material that can be top-coated with a thin layer of the recombinant spider silk protein 4RepCT in fusion with various bioactive motifs and domains. The coating process is based on a silk assembly to achieve stable interactions between the silk types under mild buffer conditions. The assembly process was studied in real time by quartz crystal microbalance with dissipation. Coatings, electrospun mats, and microporous scaffolds were constructed from Antheraea assama and Bombyx mori SFs. The morphology of the fibroin materials before and after coating with recombinant silk proteins was analyzed by scanning electron microscopy and atomic force microscopy. SF materials coated with various bioactive 4RepCT fusion proteins resulted in directed antibody capture, enzymatic activity, and improved cell attachment and spreading, respectively, compared to pristine SF materials. The herein-described procedure allows a fast and easy route for the construction of bioactive materials.

  • 6.
    Nilebäck, Linnea
    et al.
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Hedin, Jesper
    Widhe, Mona
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Floderus, Lotta S.
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Krona, Annika
    Bysell, Helena
    Hedhammar, My
    KTH, Skolan för bioteknologi (BIO), Proteinteknologi. KTH, Skolan för bioteknologi (BIO), Centra, Centrum för Bioprocessteknik, CBioPT.
    Self-Assembly of Recombinant Silk as a Strategy for Chemical-Free Formation of Bioactive Coatings: A Real-Time Study2017Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, nr 3, s. 846-854Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Functionalization of biomaterials with biologically active peptides can improve their performance after implantation. By genetic fusion to self-assembling proteins, the functional peptides can easily be presented on different physical formats. Herein, a chemical-free coating method based on self-assembly of the recombinant spider silk protein 4RepCT is described and used to prepare functional coatings on various biomaterial surfaces. The silk assembly was studied in real-time, revealing the occurrence of continuous assembly of silk proteins onto surfaces and the formation of nanofibrillar structures. The adsorbed amounts and viscoelastic properties were evaluated, and the coatings were shown to be stable against wash with hydrogen chloride, sodium hydroxide, and ethanol. Titanium, stainless steel, and hydroxyapatite were coated with silk fused to an antimicrobial peptide or a motif from fibronectin. Human primary cells cultured on the functional silk coatings show good cell viability and proliferation, implying the potential to improve implant performance and acceptance by the body.

  • 7.
    Thatikonda, Naresh
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Nilebäck, Linnea
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Kempe, Adam
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Widhe, Mona
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Hedhammar, My
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM2018Ingår i: ACS Biomaterials Science and Engineering, ISSN 2373-9878, Vol. 4, nr 9, s. 3384-3396Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Presentation of immobilized growth factors with retained bioactivity remains a challenge in the field of tissue engineering. In the present study, we propose a strategy to covalently conjugate a pleiotropic growth factor, basic fibroblast growth factor (bFGF) to a partial spider silk protein at gene level. The resulting silk-bFGF fusion protein has the propensity to self-assemble into silk-like fibers, and also surface coatings, as confirmed by quartz crystal microbalance studies. Functionality of the silk-bFGF coating to bind its cognate receptor was confirmed with surface plasmon resonance studies. As a step toward the creation of an artificial ECM, the silk-bFGF protein was mixed with FN-silk, an engineered spider silk protein with enhanced cell adhesive properties. Bioactivity of the thereby obtained combined silk was confirmed by successful culture of primary human endothelial cells on coatings and integrated within fibers, even in culture medium without supplemented growth factors. Together, these findings show that silk materials bioactivated with growth factors can be used for in vitro cell culture studies, and have potential as a tissue engineering scaffold.

1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf