kth.sePublications
Change search
Refine search result
123 1 - 50 of 136
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alander, B.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, Alnarp, Sweden.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Johansson, E.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Hedenqvist, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption2018In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 119, p. 41-48Article in journal (Refereed)
    Abstract [en]

    A novel and facile method to produce inexpensive protein biofoams suitable for sponge applications is presented. The protein used in the study was wheat gluten (WG), readily available as a by/co-product, but the method is expected to work for other cross-linkable proteins. The foams were obtained by high-speed stirring of pristine WG powder in water at room temperature followed by drying. Glutaraldehyde was used to crosslink the foam material in order to stabilize the dispersion, reduce its tackiness and improve the strength of the final foam. The foams were of medium to high density and absorbed readily both hydrophobic and hydrophilic liquids. The foam structure, consisting primarily of an open pore/channel system, led to a remarkably fast capillary-driven (pore-filling only) uptake of a hydrophobic liquid (limonene). Essentially all uptake occurred within the first second (to ca. 90% of the dry weight). In a polar liquid (water), the rapid pore-filling occurred in parallel with a more time-dependent swelling of the foam matrix material. Further improvement in the foam strength was achieved by making a denser foam or adding TEMPO-oxidized cellulose nanofibres. Soft foams were obtained by adding glycerol.

  • 2.
    Alipour, Nazanin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    VOC-Induced Flexing of Single and Multilayer Polyethylene Films As Gas Sensors2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 15, p. 9946-9953Article in journal (Refereed)
    Abstract [en]

    The differential swelling and bending of multilayer polymeric films due to the dissimilar uptake of volatile organic compounds (VOCs; n-hexane, limonene) in the different layers was studied. Motions of thin polyethylene films triggered by the penetrant were investigated to learn more about how their deformation is related to VOC absorption. Single layers of metallocene or low-density polyethylene, and multilayers (2-288-layers) of these in alternating positions were considered. Single-, 24-, and 288 layer films displayed no motion when uniformly subjected to VOCs, but they could display simple curving modes when only one side of the film was wetted with a liquid VOC. Two-layer films displayed simple bending when uniformly subjected to VOCs due to the different swelling in the two layers, but when the VOC was applied to only one side of the film, more complex modes of motion as well as dynamic oscillations were observed (e.g., constant amplitude wagging at 2 Hz for ca. 50 s until all the VOC had evaporated). Diffusion modeling was used to study the transport behavior of VOCs inside the films and the different bending modes. Finally a prototype VOC sensor was developed, where the reproducible curving of the two-layer film was calibrated with n-hexane. The sensor is simple, cost-efficient, and nondestructive and requires no electricity.

  • 3.
    Andersson, Richard L.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Mallon, Peter E.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Micromechanics of toughness improved electrospun PMMA fibers with embedded cellulose as tested under in-situ microscopyManuscript (preprint) (Other academic)
  • 4.
    Andersson, Richard L.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Mallon, P. E.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Micromechanical Tensile Testing of Cellulose-Reinforced Electrospun Fibers Using a Template Transfer Method (TTM)2012In: Journal of Polymers and the Environment, ISSN 1566-2543, E-ISSN 1572-8919, Vol. 20, no 4, p. 967-975Article in journal (Refereed)
    Abstract [en]

    A template transfer method (TTM) and a fiber fixation technique were established for fiber handling and micro tensile stage mounting of aligned and non-aligned electrospun fiber mats. The custom-made template had been precut to be mounted on a variety of collectors, including a rapidly rotating collector used to align the fibers. The method eliminated need for direct physical interaction with the fiber mats before or during the tensile testing since the fiber mats were never directly clamped or removed from the original substrate. By using the TTM it was possible to measure the tensile properties of aligned poly(methyl methacrylate) (PMMA) fiber mats, which showed a 250 % increase in strength and 450 % increase in modulus as compared to a non-aligned system. The method was further evaluated for aligned PMMA fibers reinforced with cellulose (4 wt%) prepared as enzymatically derived nanofibrillated cellulose (NFC). These fibers showed an additional increase of 30 % in both tensile strength and modulus, resulting in a toughness increase of 25 %. The fracture interfaces of the PMMA-NFC fibers showed a low amount of NFC pull-outs, indicating favorable phase compatibility. The presented fiber handling technique is universal and may be applied where conservative estimates of mechanical properties need to be assessed for very thin fibers.

  • 5.
    Andersson, Richard
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Cabedo, L.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Superparamagnetic [sic] nanofibers by electrospinning2016In: RSC Advances, E-ISSN 2046-2069, Vol. 6, no 26, p. 21413-21422Article in journal (Refereed)
    Abstract [en]

    The preparation of superparamagnetic thin fibers by electrospinning dispersions of nanosized magnetite (Fe3O4, SPIO/USPIO) in a PMMA/PEO polymer solution is reported. The saturation magnetization and coercivity were not affected by the concentration (0, 1, 10, 20 wt%) or fiber orientation, showing hysteresis loops with high magnetization (64 A m(2) kg(-1) @ 500 kA m(-1)) and record low coercivity (20 A m(-1)). AC susceptibility measurements vs. temperature at frequencies from 60 to 2 kHz confirmed superparamagnetism. The mechanical properties were only slightly dependent on the particle concentration because the nanoparticles were separately encapsulated by the polymer. A uniform fibre fracture cross section was found at all the investigated particle contents, which suggests a strong interaction at the polymer/particle interface. A theoretical value of the magnetic low field susceptibility was calculated from the Langevin function and compared with measured values. The results show a distinct but concentration-independent anisotropy, favoring magnetization along the fiber orientation with no sign of exchange interaction, explained by complete nanoparticle separation. Superparamagnetism cannot be inferred from particle size alone, so a relevant interpretation and criterion for superparamagnetism is presented, in accordance with Neel's original definition. From the measurements, it can be concluded that magnetic characterization can be used to elucidate the material morphology beyond the resolution of available microscopy techniques (TEM and SEM).

  • 6.
    Andersson, Richard L.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Martinez-Abad, Antonio
    Lagaron, Jose M.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Mallon, Peter E.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Antibacterial Properties of Tough and Strong Electrospun PMMA/PEO Fiber Mats Filled with Lanasol-A Naturally Occurring Brominated Substance2014In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 15, no 9, p. 15912-15923Article in journal (Refereed)
    Abstract [en]

    A new type of antimicrobial, biocompatible and toughness enhanced ultra-thin fiber mats for biomedical applications is presented. The tough and porous fiber mats were obtained by electrospinning solution-blended poly (methyl methacrylate) (PMMA) and polyethylene oxide (PEO), filled with up to 25 wt % of Lanasol-a naturally occurring brominated cyclic compound that can be extracted from red sea algae. Antibacterial effectiveness was tested following the industrial Standard JIS L 1902 and under agitated medium (ASTM E2149). Even at the lowest concentrations of Lanasol, 4 wt %, a significant bactericidal effect was seen with a 4-log (99.99%) reduction in bacterial viability against S. aureus, which is one of the leading causes of hospital-acquired (nosocomial) infections in the world. The mechanical fiber toughness was insignificantly altered up to the maximum Lanasol concentration tested, and was for all fiber mats orders of magnitudes higher than electrospun fibers based on solely PMMA. This antimicrobial fiber system, relying on a dissolved antimicrobial agent (demonstrated by X-ray diffraction and Infrared (IR)-spectroscopy) rather than a dispersed and "mixed-in" solid antibacterial particle phase, presents a new concept which opens the door to tougher, stronger and more ductile antimicrobial fibers.

  • 7.
    Andersson, Richard L.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Mallon, Peter E.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope2014In: Scientific Reports, E-ISSN 2045-2322, Vol. 4, p. 6335-Article in journal (Refereed)
    Abstract [en]

    A missing cornerstone in the development of tough micro/nano fibre systems is an understanding of the fibre failure mechanisms, which stems from the limitation in observing the fracture of objects with dimensions one hundredth of the width of a hair strand. Tensile testing in the electron microscope is herein adopted to reveal the fracture behaviour of a novel type of toughened electrospun poly(methyl methacrylate)/poly(ethylene oxide) fibre mats for biomedical applications. These fibres showed a toughness more than two orders of magnitude greater than that of pristine PMMA fibres. The in-situ microscopy revealed that the toughness were not only dependent on the initial molecular alignment after spinning, but also on the polymer formulation that could promote further molecular orientation during the formation of micro/nano-necking. The true fibre strength was greater than 150 MPa, which was considerably higher than that of the unmodified PMMA (17 MPa). This necking phenomenon was prohibited by high aspect ratio cellulose nanocrystal fillers in the ultra-tough fibres, leading to a decrease in toughness by more than one order of magnitude. The reported necking mechanism may have broad implications also within more traditional melt-spinning research.

  • 8.
    Antonio, Capezza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andersson, Richard L.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Sacchi, Benedetta
    Univ Milan, Dept Chem, Via Golgi 19, I-20133 Milan, Italy.
    Farris, Stefano
    Univ Milan, DeFENS, Dept Food Environm & Nutr Sci, Packaging Div, Via Celoria 2, I-20133 Milan, Italy.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Preparation and Comparison of Reduced Graphene Oxide and Carbon Nanotubes as Fillers in Conductive Natural Rubber for Flexible Electronics2019In: Omega, ISSN 0030-2228, E-ISSN 1541-3764, Vol. 4, no 2Article in journal (Refereed)
    Abstract [en]

    Conductive natural rubber (NR) nanocomposites were prepared by solvent-casting suspensions of reduced graphene oxide(rGO) or carbon nanotubes (CNTs), followed by vulcanization of the rubber composites. Both rGO and CNT were compatible as fillers in the NR as well as having sufficient intrinsic electrical conductivity for functional applications. Physical (thermal) and chemical reduction of GO were investigated, and the results of the reductions were monitored by X-ray photoelectron spectroscopy for establishing a reduction protocol that was useful for the rGO nanocomposite preparation. Field-emission scanning electron microscopy showed that both nanofillers were adequately dispersed in the main NR phase. The CNT composite displays a marked mechanical hysteresis and higher elongation at break, in comparison to the rGO composites for an equal fraction of the carbon phase. Moreover, the composite conductivity was always ca. 3-4 orders of magnitude higher for the CNT composite than for the rGO composites, the former reaching a maximum conductivity of ca. 10.5 S/m, which was explained by the more favorable geometry of the CNT versus the rGO sheets. For low current density applications though, both composites achieved the necessary percolation and showed the electrical conductivity needed for being applied as flexible conductors for a light-emitting diode. 

    Download full text (pdf)
    fulltext
  • 9.
    Ashour, Radwa M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering. Nuclear Materials Authority, P.O. Box 530, ElMaadi, Cairo 11381, Egypt.
    Abdel-Magied, Ahmed Fawzy
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery. Nuclear Materials Authority, P.O. Box 530, ElMaadi, Cairo 11381, Egypt.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Green Synthesis of Metal-Organic Framework Bacterial Cellulose Nanocomposites for Separation Applications2020In: Polymers, E-ISSN 2073-4360, Vol. 12, no 5, article id 1104Article in journal (Refereed)
    Abstract [en]

    Metal organic frameworks (MOFs) are porous crystalline materials that can be designed to act as selective adsorbents. Due to their high porosity they can possess very high adsorption capacities. However, overcoming the brittleness of these crystalline materials is a challenge for many industrial applications. In order to make use of MOFs for large-scale liquid phase separation processes they can be immobilized on solid supports. For this purpose, nanocellulose can be considered as a promising supporting material due to its high flexibility and biocompatibility. In this study a novel flexible nanocellulose MOF composite material was synthesised in aqueous media by a novel and straightforward in situ one-pot green method. The material consisted of MOF particles of the type MIL-100(Fe) (from Material Institute de Lavoisier, containing Fe(III) 1,3,5-benzenetricarboxylate) immobilized onto bacterial cellulose (BC) nanofibers. The novel nanocomposite material was applied to efficiently separate arsenic and Rhodamine B from aqueous solution, achieving adsorption capacities of 4.81, and 2.77 mg g‒1, respectively. The adsorption process could be well modelled by the nonlinear pseudo-second-order fitting.

  • 10.
    Bettelli, Mercedes
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Nilsson, F.
    Johansson, E.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Sustainable Wheat Protein Biofoams: Dry Upscalable Extrusion at Low Temperature2022In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 23, no 12, p. 5116-5126Article in journal (Refereed)
    Abstract [en]

    Glycerol-plasticized wheat gluten was explored for producing soft high-density biofoams using dry upscalable extrusion (avoiding purposely added water). The largest pore size was obtained when using the food grade ammonium bicarbonate (ABC) as blowing agent, also resulting in the highest saline liquid uptake. Foams were, however, also obtained without adding a blowing agent, possibly due to a rapid moisture uptake by the dried protein powder when fed to the extruder. ABC's low decomposition temperature enabled extrusion of the material at a temperature as low as 70 °C, well below the protein aggregation temperature. Sodium bicarbonate (SBC), the most common food-grade blowing agent, did not yield the same high foam qualities. SBC's alkalinity, and the need to use a higher processing temperature (120 °C), resulted in high protein cross-linking and aggregation. The results show the potential of an energy-efficient and industrially upscalable low-temperature foam extrusion process for competitive production of sustainable biofoams using inexpensive and readily available protein obtained from industrial biomass (wheat gluten). 

  • 11.
    Birdsong, Björn K.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hoogendoorn, Billy W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58 11428 Stockholm Sweden.
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Mid Sweden University Sundsvall 85170 Sweden.
    Andersson, Richard L.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Farris, Stefano
    DeFENS - Department of Food, Environmental and Nutritional Sciences Food Packaging Laboratory, Via Celoria 2, Milan, 20133, Italy.
    Guerrero, Antonio
    Department of Chemical Engineering, Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, 41011, Spain.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Large-scale synthesis of 2D-silica (SiOx) nanosheets using graphene oxide (GO) as a template material2023In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 15, no 31, p. 13037-13048Article in journal (Refereed)
    Abstract [en]

    Graphene oxide (GO) was used in this study as a template to successfully synthesize silicon oxide (SiOx) based 2D-nanomaterials, adapting the same morphological features as the GO sheets. By performing a controlled condensation reaction using low concentrations of GO (<0.5 wt%), the study shows how to obtain 2D-nanoflakes, consisting of GO-flakes coated with a silica precursor that were ca. 500 nm in lateral diameter and ca. 1.5 nm in thickness. XPS revealed that the silanes had linked covalently with the GO sheets at the expense of the oxygen groups present on the GO surface. The GO template was shown to be fully removable through thermal treatment without affecting the nanoflake morphology of the pure SiOx-material, providing a methodology for large-scale preparation of SiOx-based 2D nanosheets with nearly identical dimensions as the GO template. The formation of SiOx sheets using a GO template was investigated for two different silane precursors, (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), showing that both precursors were capable of accurately templating the graphene oxide template. Molecular modeling revealed that the choice of silane affected the number of layers coated on the GO sheets. Furthermore, rheological measurements showed that the relative viscosity was significantly affected by the specific surface area of the synthesized particles. The protocol used showed the ability to synthesize these types of nanoparticles using a common aqueous alcohol solvent, and yield larger amounts (∼1 g) of SiOx-sheets than what has been previously reported.

  • 12.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Menon, Mohan
    Plackett, David
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Novel Foams Based on Freeze-Dried Renewable Vital Wheat Gluten2010In: Macromolecular materials and engineering, ISSN 1438-7492, E-ISSN 1439-2054, Vol. 295, no 9, p. 796-801Article in journal (Refereed)
    Abstract [en]

    A new way of producing rigid or semi-rigid foams from vital wheat gluten using a freeze-drying process is reported. Water/gluten-based mixtures were frozen and freeze-dried. Different foam structures were obtained by varying the mixing process and wheat gluten concentration, or by adding glycerol or bacterial cellulose nanofibers. MIP revealed that the foams had mainly an open porosity peaking at 93%. The average pore diameter ranged between 20 and 73 mm; the sample with the highest wheat gluten concentration and no plasticizer had the smallest pores. Immersion tests with limonene revealed that the foams rapidly soaked up the liquid. An especially interesting feature of the low-wheat-concentration foams was the "in situ'' created soft-top-rigid-bottom foams.

  • 13.
    Buyuktas, Duygu
    et al.
    Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Gülbahçe Köyü, Urla, Izmir, Turkey; DeFENS, Department of Food, Environmental and Nutritional Sciences, Food Packaging Lab., University of Milan, via Celoria 2 – I, 20133, Milan, Italy.
    Ghaani, Masoud
    Univ Milan, Dept Food Environm & Nutr Sci, Food Packaging Lab, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy..
    Rovera, Cesare
    Univ Milan, Dept Food Environm & Nutr Sci, Food Packaging Lab, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy..
    Carullo, Daniele
    Univ Milan, Dept Food Environm & Nutr Sci, Food Packaging Lab, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy..
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Korel, Figen
    Izmir Inst Technol, Fac Engn, Dept Food Engn, TR-35430 Izmir, Turkiye..
    Farris, Stefano
    Univ Milan, Dept Food Environm & Nutr Sci, Food Packaging Lab, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy.;Univ Milan, INSTM, Natl Consortium Mat Sci & Technol, Local Unit, via Celoria 2-I, I-20133 Milan, Italy..
    A screen-printed electrode modified with gold nanoparticles/ cellulose nanocrystals for electrochemical detection of 4,4'-methylene diphenyl diamine2023In: Heliyon, E-ISSN 2405-8440, Vol. 9, no 4, article id e15327Article in journal (Refereed)
    Abstract [en]

    Developing simple, cost-effective, easy-to-use, and reliable analytical devices if of utmost importance for the food industry for rapid in-line checks of their products that must comply with the provisions set by the current legislation. The purpose of this study was to develop a new electrochemical sensor for the food packaging sector. More specifically, we propose a screen -printed electrode (SPE) modified with cellulose nanocrystals (CNCs) and gold nanoparticles (AuNPs) for the quantification of 4,4'-methylene diphenyl diamine (MDA), which is one of the most important PAAs that can transfer from food packaging materials into food stuffs. The electrochemical performance of the proposed sensor (AuNPs/CNCs/SPE) in the presence of 4,4'- MDA was evaluated using cyclic voltammetry (CV). The modified AuNPs/CNCs/SPE showed the highest sensitivity for 4,4'-MDA detection, with a peak current of 9.81 mu A compared with 7.08 mu A for the bare SPE. The highest sensitivity for 4,4'-MDA oxidation was observed at pH = 7, whereas the detection limit was found at 57 nM and the current response of 4,4'-MDA rose linearly as its concentration increased from 0.12 mu M to 100 mu M. Experiments using real packaging materials revealed that employing nanoparticles dramatically improved both the sensitivity and the selectivity of the sensor, which can be thus considered as a new analytical tool for quick, simple, and accurate measurement of 4,4 '-MDA during converting operations.

  • 14.
    Buyuktas, Duygu
    et al.
    Izmir Inst Technol, Fac Engn, Dept Food Engn, TR-35430 Izmir, Turkey..
    Ghaani, Masoud
    Univ Milan, Food Packaging Lab, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy..
    Rovera, Cesare
    Univ Milan, Food Packaging Lab, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy..
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Korel, Figen
    Izmir Inst Technol, Fac Engn, Dept Food Engn, TR-35430 Izmir, Turkey..
    Farris, Stefano
    Univ Milan, Food Packaging Lab, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2-I, I-20133 Milan, Italy.;Univ Milan, Local Unit, Natl Consortium Mat Sci & Technol, INSTM, Via Celoria 2-I, I-20133 Milan, Italy..
    Development of a nano-modified glassy carbon electrode for the determination of 2,6-diaminotoluene (TDA)2021In: FOOD PACKAGING AND SHELF LIFE, ISSN 2214-2894, Vol. 29, article id 100714Article in journal (Refereed)
    Abstract [en]

    The objective of this study was to improve the overall performance of a glassy carbon electrode (GCE) for the detection of 2,6-diaminotoluene (TDA), a possibly carcinogenic primary aromatic amines (PAAs) that poses a serious risk for the consumer' health because they can transfer from multilayer food packages including adhesives based on aromatic polyurethane (PU) systems, to the food. The modification of the electrode surface was made by means of multi-walled carbon nanotubes (MWCNTs) and mesopomus carbon nanoparticles (MCNs). The MWCNTs-MCNs/GCE allowed achieving the best performance in terms of sensitivity, as revealed by cyclic voltammetry - CV, with an oxidation peak of 20.95 mu A over 0.079 mu A of the bare GCE. The pH of the medium influenced the oxidation of 2,6-TDA, with highest sensitivity at pH similar to 7. Amperometry experiments led to an estimated detection limit of 0.129 mu M, and three linear ranges were obtained for 2,6-TDA: 0.53-11.37 mu M, 11.37-229.36 mu M, and 229.36-2326.60 mu M. Chronoamperometry experiments combined with Cottrell's theory allowed estimating a diffusion coefficient of 2,6-TDA of 1.34 x 10(-4) cm(2) s(-1). The number of electrons (n similar to 1) involved in the catalytic oxidation of 2,6-TDA was determined according to the Lavimn's theory. Real sample tests demonstrated that the modification of the sensor using nanoparticls allowed to obtain a highly sensitive and selective sensor, which can possibly used as an alternative analytical device for the rapid, easy, and reliable determination of 2,6-TDA.

  • 15.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Glad, David
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Ozeren, Husamettin Deniz
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Newson, William R.
    SLU Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, Sundsvagen 10, S-23053 Alnarp, Sweden..
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    SLU Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, Sundsvagen 10, S-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Novel Sustainable Superabsorbents: A One-Pot Method for Functionalization of Side-Stream Potato Proteins2019In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 7, no 21, p. 17845-17854Article in journal (Refereed)
    Abstract [en]

    The functionalization of inexpensive potato protein concentrate (PPC) is presented as a simple and easily scalable method to produce bio-based superabsorbent powders. Five nontoxic acylating agents were evaluated at different reaction temperatures for solvent-free acylation of the protein. The best results were obtained for succinic anhydride (SA) and a reaction temperature of 140 degrees C. These conditions resulted in efficient functionalization that provided formation of a useful network, which allowed high uptake of fluids and little material disintegration during the uptake, that is, due to protein hydrolysis during the functionalization. The SA-acylated PPC showed increased water and saline swelling capacities of 600 and 60%, respectively, as compared to untreated PPC. The acylated potato protein also showed a saline liquid holding capacity of approximately 50% after centrifugation at 1230 rpm for 3 min, as well as a significant blood swelling capacity of 530%. This blood swelling represents more than 50% of that of a commercial fossil-based superabsorbent (SAP) used for blood absorption in sanitary health products. The swelling properties of these inexpensive protein-based acylated materials highlight their potential as sustainable SAP materials (from industrial side-streams) in applications such as daily care products that are currently dominated by fossil-based SAPs.

  • 16.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Lundman, Malin
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Newson, William
    Department of Plant Breeding, Faculty of Landscape Planning, Horticulturem and Crop Production Sciences, SLU Swedish University of Agricultural Sciences, Alnarp 23053, Sweden.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    Department of Plant Breeding, Faculty of Landscape Planning, Horticulturem and Crop Production Sciences, SLU Swedish University of Agricultural Sciences, Alnarp 23053, Sweden.
    Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials2020In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 21, no 5, p. 1709-1719Article in journal (Refereed)
    Abstract [en]

    Functionalized wheat gluten (WG) protein particles with the ability to absorb fluids within the superabsorbent range are presented. Ethyleneditetraacetic dianhydride (EDTAD), a nontoxic acylation agent, was used for the functionalization of the WG protein at higher protein content than previously reported and no additional chemical cross-linking. The 150-550 μm protein particles had 50-150 nm nanopores induced by drying. The EDTAD treated WG were able to absorb 22, 5, and 3 times of, respectively, water, saline and blood, per gram of dry material (g/g), corresponding to 1000, 150 and 100% higher values than for the as-received WG powder. The liquid retention capacity after centrifugation revealed that almost 50% of the saline liquid was retained within the protein network, which is similar to that for petroleum-based superabsorbent polymers (SAPs). An advantageous feature of these biobased particulate materials is that the maximum swelling is obtained within the first 10 min of exposure, that is, in contrast to many commercial SAP alternatives. The large swelling in a denaturation agent (6 M urea) solution (about 32 g/g) suggests that the secondary entangled/folded structure of the protein restricts protein network expansion and when disrupted allows the absorption of even higher amounts of liquid. The increased liquid uptake, utilization of inexpensive protein coproducts, easy scalable protocols, and absence of any toxic chemicals make these new WG-based SAP particles an interesting alternative to petroleum-based SAP in, for example, absorbent disposable hygiene products.

  • 17.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Plant Breeding Department, SLU Alnarp, Lomma, Sweden.
    Muneer, Faraz
    SLU Alnarp, Plant Breeding Dept, Lomma, Sweden..
    Prade, Thomas
    SLU Alnarp, Biosyst & Technol Dept, Lomma, Sweden..
    Newson, William R.
    SLU Alnarp, Plant Breeding Dept, Lomma, Sweden..
    Das, Oisik
    Luleå Univ Technol, Struct & Fire Engn Div, Dept Civil Environm & Nat Resources Engn, Luleå, Sweden..
    Lundman, Malin
    Essity Hyg & Hlth AB, Gothenburg, Sweden..
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    SLU Alnarp, Plant Breeding Dept, Lomma, Sweden..
    Acylation of agricultural protein biomass yields biodegradable superabsorbent plastics2021In: Communications Chemistry, E-ISSN 2399-3669, Vol. 4, no 1, article id 52Article in journal (Refereed)
    Abstract [en]

    Superabsorbent materials can absorb many times their weight in water, but are commonly derived from petroleum. Here, acylation of coagulated potato protein concentrate or soluble potato protein fruit juice yields an effective, mould-resistant, and biodegradable superabsorbent polymer. Superabsorbent polymers (SAP) are a central component of hygiene and medical products requiring high liquid swelling, but these SAP are commonly derived from petroleum resources. Here, we show that sustainable and biodegradable SAP can be produced by acylation of the agricultural potato protein side-stream (PPC) with a non-toxic dianhydride (EDTAD). Treatment of the PPC yields a material with a water swelling capacity of ca. 2400%, which is ten times greater than the untreated PPC. Acylation was also performed on waste potato fruit juice (PFJ), i.e. before the industrial treatment to precipitate the PPC. The use of PFJ for the acylation implies a saving of 320 000 tons as CO2 in greenhouse gas emissions per year by avoiding the industrial drying of the PFJ to obtain the PPC. The acylated PPC shows biodegradation and resistance to mould growth. The possibilities to produce a biodegradable SAP from the PPC allows for future fabrication of environment-friendly and disposable daily-care products, e.g. diapers and sanitary pads.

  • 18.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Newson, William R.
    Swedish Univ Agr Sci, Dept Plant Breeding, Box 190, SE-23422 Lomma, Sweden..
    Muneer, Faraz
    Swedish Univ Agr Sci, Dept Plant Breeding, Box 190, SE-23422 Lomma, Sweden..
    Johansson, Eva
    Swedish Univ Agr Sci, Dept Plant Breeding, Box 190, SE-23422 Lomma, Sweden..
    Cui, Yuxiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Prade, Thomas
    Swedish Univ Agr Sci, Dept Biosyst & Technol, POB 190, SE-23422 Lomma, Sweden..
    Greenhouse gas emissions of biobased diapers containing chemically modified protein superabsorbents2023In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 387, article id 135830Article in journal (Refereed)
    Abstract [en]

    Replacing the current mainly fossil-based, disposable, and non-biodegradable sanitary products with sustainable, functional alternatives is an industry priority. Suggested biobased alternatives require evaluation of their actual impact on greenhouse gas (GHG) emissions. We evaluated GHG emissions of biobased baby diapers as the most consumed sanitary product, using a biodegradable functionalized protein superabsorbent polymer (bioSAP) and compared them with currently used fossil-based counterparts. Assessment of the diapers also included estimated GHG emissions from the production of the biobased components, transport, and end-of-life combustion of these items. It was shown that only a few of the biobased diaper alternatives resulted in lower GHG emissions than commercial diapers containing fossil-based materials. At the same time, it was demonstrated that the production of the bioSAP via chemical modification of a protein raw material is the primary GHG contributor, with 78% of the total emissions. Reduction of the GHG contribution of the bioSAP production was achieved via a proposed recycling route of the functionalization agent, reducing the GHG emissions by 13% than if no recycling was carried out. Overall, we demonstrated that reduced and competitive GHG emissions could be achieved in sanitary articles using biobased materials, thereby contributing to a sanitary industry producing disposable products with less environmental pollution while allowing customers to keep their current consumption patterns.

  • 19.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Robert, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lundman, Malin
    Essity Hyg & Hlth AB, SE-40503 Gothenburg, Sweden..
    Newson, William R.
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Box 101, SE-23053 Alnarp, Sweden..
    Johansson, Eva
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Box 101, SE-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Extrusion of Porous Protein-Based Polymers and Their Liquid Absorption Characteristics2020In: Polymers, E-ISSN 2073-4360, Vol. 12, no 2, article id 459Article in journal (Refereed)
    Abstract [en]

    The production of porous wheat gluten (WG) absorbent materials by means of extrusion processing is presented for the future development of sustainable superabsorbent polymers (SAPs). Different temperatures, formulations, and WG compositions were used to determine a useful protocol that provides the best combination of porosity and water swelling properties. The most optimal formulation was based on 50 wt.% WG in water that was processed at 80 degrees C as a mixture, which provided a porous core structure with a denser outer shell. As a green foaming agent, food-grade sodium bicarbonate was added during the processing, which allowed the formation of a more open porous material. This extruded WG material was able to swell 280% in water and, due to the open-cell structure, 28% with non-polar limonene. The results are paving the way towards production of porous bio macromolecular structures with high polar/non-polar liquid uptake, using extrusion as a solvent free and energy efficient production technique without toxic reagents.

  • 20.
    Capezza, Antonio Jose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Newson, William R.
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden..
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Espuche, Eliane
    Univ Lyon, Univ Lyon1, Ingn Mat Polymeres, UMR CNRS 5223, Batiment Polytech 15,Bd Andre Latarjet, F-69622 Villeurbanne, France..
    Johansson, Eva
    SLU Swedish Univ Agr Sci, Dept Plant Breeding, Sundsvagen 10,POB 101, SE-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers2019In: ACS Omega, E-ISSN 2470-1343, Vol. 4, no 19, p. 18257-18267Article in journal (Refereed)
    Abstract [en]

    The development of fully natural wheat gluten foams showing rapid and high uptake of water, sheep blood, and saline solution, while maintaining high mechanical stability in the swollen state, is presented. Genipin was added as a natural and polar cross-linker to increase the polarity of the protein chains, whereas cellulose nanofibers (CNFs) were added as a reinforcement/stiffener of the foams, alone or in combination with the genipin. The presence of only genipin resulted in a foam that absorbed up to 25 g of water per gram of foam and a more than 15 g uptake in only 8 min. In contrast, with CNF alone, it was not possible to maintain the mechanical stability of the foam during the water uptake and the protein foam disintegrated. The combination of CNF and genipin yielded a material with the best mechanical stability of the tested samples. In the latter case, the foam could be compressed repeatedly more than 80% without displaying any structural damage. The results revealed that a strong network had formed between the wheat gluten matrix, genipin, and cellulose in the foam structure. A unique feature of the absorbent/foam, in contrast to commercial superabsorbents, was that it was able to rapidly absorb nonpolar liquids (here, n-heptane) due to the open-cell structure. The capillary-driven absorption due to the open-cell structure, the high liquid absorption in the cell walls, and the mechanical properties (both in dry and swollen states) of these natural foams make them interesting as a sustainable replacement for a range of petroleum-based foam materials, including absorbent hygiene products such as sanitary pads.

  • 21. Castro-Mayorga, J. L.
    et al.
    Fabra, M. J.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Lagaron, J. M.
    The impact of zinc oxide particle morphology as an antimicrobial and when incorporated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for food packaging and food contact surfaces applications2017In: Food and Bioproducts Processing, ISSN 0960-3085, E-ISSN 1744-3571, Vol. 101, p. 32-44Article in journal (Refereed)
    Abstract [en]

    In this work, zinc oxide (ZnO) micron and nano sized-particles with different morphologies were synthesized by aqueous precipitation and evaluated as antimicrobial agents against foodborne pathogens. The most effective bactericide system was selected to prepare active poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by three different methods (i) direct melt-mixing, (ii) melt-mixing of preincorporated ZnO into PHBV18 (18 mol% valerate content) fiber mats made by electrospinning, and, (iii) as a coating of the annealed electrospun PHBV18/ZnO fiber mats over compression molded PHBV. Results showed that ZnO successfully improved the thermal stability of the PHBV18, being the preincorporation method the most efficient in mitigating the negative impact that the PHBV18 had on the thermal stability, barrier and optical properties of the PHBV films. Similar behavior was found for the coating structure although this film showed effective and prolonged antibacterial activity against Listeria monocytogenes. This study highlights the suitability of the PHBV/ZnO nanostructures for active food packaging and food contact surface applications.

  • 22.
    Chen, Fei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gällstedt, M.
    Olsson, Rickard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    A novel chitosan/wheat gluten biofoam fabricated by spontaneous mixing and vacuum-drying2015In: RSC Advances, E-ISSN 2046-2069, Vol. 5, no 114, p. 94191-94200Article in journal (Refereed)
    Abstract [en]

    A new type of chitosan and wheat gluten biofoam is presented. The pore structure achieved relied solely on the specific mixing and phase distribution when a film was cast from an aqueous mixture of chitosan/wheat gluten solution, in the absence of any chemical blowing agent, porogen or expanding gas. The foam was obtained when the liquid phase was removed by vacuum drying, without the need for the traditional freeze-drying that is frequently used for pore formation. Soft foam samples could be prepared with stiffnesses from 0.3 to 1.2 MPa and a high rebound resilience (64 and 94% at compressive strains of 80 and 20%, respectively). The foams were relatively ductile and did not require any plasticiser to allow for in-plane deformation (20% compression) and smaller bending. Only open pores with sizes of the order of 70-80 μm were observed by microscopy. The density of all the foams was ∼50 kg m-3, due to the high porosity (96% air). The foams showed a rapid and large uptake of both non-polar (limonene) and polar (water) liquids. When immersed in these liquids for 1 second, the maximum uptake recorded was 40 times the initial mass of the foam for limonene and 8 times for water.

  • 23.
    Chen, Fei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gällstedt, Mikael
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    A Novel Chitosan/Wheat Gluten Biofoam Fabricated by Mixing and Vacuum-dryingManuscript (preprint) (Other academic)
  • 24.
    Chen, Fei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gällstedt, Mikael
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Gedde, Ulf
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Unusual Effects of Monocarboxylic Acids on The Structure and on The Transport and Mechanical Properties of Chitosan Films2015In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 132, p. 419-429Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to study the transport of monocarboxylic acids in chitosan films, since this is important for understanding and predicting the drying kinetics of chitosan from aqueous solutions. Despite the wealth of data on chitosan films prepared from aqueous monocarboxylic acid solutions, this transport has not been reported. Chitosan films were exposed to formic, acetic, propionic and butyric acid vapours, it was found that the rate of uptake decreased with increasing molecular size. The equilibration time was unexpectedly long, especially for propionic and butyric acid, nine months. A clear two-stage uptake curve was observed for propionic acid. Evidently, the rate of uptake was determined by acid-induced changes in the material. X-ray diffraction and infrared spectroscopy indicated that the structure of the chitosan acetate and buffered chitosan films changed during exposure to acid and during the subsequent drying. The dried films previously exposed to the acid showed less crystalline features than the original material and a novel repeating structure possibly involving acid molecules. The molar mass of the chitosan decreased on exposure to acid but tensile tests revealed that the films were always ductile. The films exposed to acid vapour (propionic and butyric acid) for the longest period of time were insoluble in the size-exclusion chromatography eluent, and they were also the most ductile/extensible of all samples studied.

  • 25. Cozzolino, Carlo A.
    et al.
    Campanella, Gaetano
    Ture, Hasan
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Farris, Stefano
    Microfibrillated cellulose and borax as mechanical, O-2-barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP2016In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 143, p. 179-187Article in journal (Refereed)
    Abstract [en]

    Multifunctional composite coatings on bi-oriented polypropylene (BOPP) films were obtained using borax and microfibrillated cellulose (MFC) added to the main pullulan coating polymer. Spectroscopy analyses suggested that a first type of interaction occurred via hydrogen bonding between the C-6-OH group of pullulan and the hydroxyl groups of boric acid, while monodiol and didiol complexation represented a second mechanism. The deposition of the coatings yielded an increase in the elastic modulus of the entire plastic substrate (from similar to 2 GPa of the neat BOPP to similar to 3.1 GPa of the P/B+/MFC-coated BOPP). The addition of MFC yielded a decrease of both static and kinetic coefficients of friction of approximately 22% and 25%, respectively, as compared to the neat BOPP. All composite coatings dramatically increased the oxygen barrier performance of BOPP, especially under dry conditions. The deposition of the high hydrophilic coatings allowed to obtain highly wettable surfaces (water contact angle of similar to 18 degrees).

  • 26.
    Das, Oisik
    et al.
    Luleå Univ Technol, Dept Engn Sci & Math, S-97187 Luleå, Sweden..
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Mårtensson, Julia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Dong, Yu
    Neisiany, Rasoul Esmaeely
    Pelcastre, Leonardo
    Jiang, Lin
    Xu, Qiang
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    The Effect of Carbon Black on the Properties of Plasticised Wheat Gluten Biopolymer2020In: Molecules, ISSN 1431-5157, E-ISSN 1420-3049, Vol. 25, no 10, p. 2279-Article in journal (Refereed)
    Abstract [en]

    Wheat gluten biopolymers generally become excessively rigid when processed without plasticisers, while the use of plasticisers, on the other hand, can deteriorate their mechanical properties. As such, this study investigated the effect of carbon black (CB) as a filler into glycerol-plasticised gluten to prepare gluten/CB biocomposites in order to eliminate the aforementioned drawback. Thus, biocomposites were manufactured using compression moulding followed by the determination of their mechanical, morphological, and chemical properties. The filler content of 4 wt% was found to be optimal for achieving increased tensile strength by 24%, and tensile modulus by 268% along with the toughness retention based on energy at break when compared with those of glycerol-plasticised gluten. When reaching the filler content up to 6 wt%, the tensile properties were found to be worsened, which can be ascribed to excessive agglomeration of carbon black at the high content levels within gluten matrices. Based on infrared spectroscopy, the results demonstrate an increased amount of beta -sheets, suggesting the formation of more aggregated protein networks induced by increasing the filler contents. However, the addition of fillers did not improve fire and water resistance in such bionanocomposites owing to the high blend ratio of plasticiser to gluten.

  • 27.
    Das, Oisik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, E.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Loho, T. A.
    Capezza, Antonio J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Singh Raman, R. K.
    Holder, Shima
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    An all-gluten biocomposite: Comparisons with carbon black and pine char composites2019In: Composites. Part A, Applied science and manufacturing, ISSN 1359-835X, E-ISSN 1878-5840, Vol. 120, p. 42-48Article in journal (Refereed)
    Abstract [en]

    Three different charcoals (gluten char, pine bark char and carbon black) were used to rectify certain property disadvantages of wheat gluten plastic. Pyrolysis process of gluten was investigated by analysing the compounds released at different stages. Nanoindentation tests revealed that the gluten char had the highest hardness (ca. 0.5 GPa) and modulus (7.8 GPa) followed by pine bark char and carbon black. The addition of chars to gluten enhanced the indenter-modulus significantly. Among all the charcoals, gluten char was found to impart the best mechanical and water resistant properties. The addition of only 6 wt% gluten char to the protein caused a substantial reduction in water uptake (by 38%) and increase of indenter-modulus (by 1525%). It was shown that it is possible to obtain protein biocomposites where both the filler and the matrix are naturally sourced from the same material, in this case, yielding an all-gluten derived biocomposite.

  • 28.
    Fang, Mei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Belova, Lyubov
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Rao, K. Venkat
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles2012In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 23, no 14, p. 145601-Article in journal (Refereed)
    Abstract [en]

    Magnetite nanoparticles have been prepared by co-precipitation using a custom-designed jet mixer to achieve rapid mixing (RM) of reactants in a timescale of milliseconds. The quick and stable nucleation obtained allows control of the particle size and size distribution via a more defined growth process. Nanoparticles of different sizes were prepared by controlling the processing temperature in the first few seconds post-mixing. The average size of the nanoparticles investigated using a Tecnai transmission electron microscope is found to increase with the temperature from 3.8 nm at 1 +/- 1 degrees C to 10.9 nm for particles grown at 95 +/- 1 degrees C. The temperature dependence of the size distribution follows the same trend and is explained in terms of Ostwald ripening of the magnetite nanoparticles during the co-precipitation of Fe2+ and Fe3+. The magnetic properties were studied by monitoring the blocking temperature via both DC and AC techniques. Strikingly, the obtained RM particles maintain the high magnetization (as high as similar to 88 A m(2) kg(-1) at 500 kA m(-1)) while the coercivity is as low as similar to 12 A m(-1) with the expected temperature dependence. Besides, by adding a drop of tetramethylammonium hydroxide, aqueous ferrofluids with long term stability are obtained, suggesting their suitability for applications in ferrofluid technology and biomedicine.

  • 29.
    Fang, Mei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Belova, Lyubov
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Rao, K. Venkat
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Rapid mixing: A route to synthesize magnetite nanoparticles with high moment2011In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 99, no 22, p. 222501-Article in journal (Refereed)
    Abstract [en]

    We demonstrate the impact of rapid mixing of the precursors in a time scale of milliseconds on the reaction rate and magnetic properties of co-precipitated magnetite with a custom-made mixer. The mixed volume is directed into a desk-top AC susceptometer to monitor the magnetic response from the growing particles in real-time. These measurements indicate that the reaction is mostly completed within a minute. The obtained superparamagnetic nanoparticles exhibit a narrow size distribution and large magnetization (87 Am(2) kg(-1)). Transmission electron micrographs suggest that rapid mixing is the key for better crystallinity and a more uniform morphology leading to the observed magnetization values.

  • 30.
    Federico, Carlos Eloy
    et al.
    Luxembourg Inst Sci & Technol, Mat Res & Technol, L-4940 Hautcharage, Luxembourg..
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Three-dimensional (3D) morphological and liquid absorption assessment of sustainable biofoams absorbents using X-ray microtomography analysis2022In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 116, article id 107753Article in journal (Refereed)
    Abstract [en]

    The three-dimensional (3D) microstructure of sustainable and biodegradable protein foam absorbents is correlated to their liquid absorption characteristics using X-ray microtomography. The physicochemical relationships between the protein material pore size and liquid penetration and distribution allow for understanding how the pores' interconnectivity impacts the absorption, particularly considering capillary-driven transport phenomena within the thin nano cell walls. The foams were made via lyophilization of protein solutions containing cellulose nanofibers to emphasize the impact of the processing on the foam microstructure. The results show gaseous and solid phases of the foams covering ca. 1000 pores, providing information that cannot be obtained using traditional 2D analysis (SEM). A correlation with the channel tortuosity was established based on the statistical ac-curacy of the diameter and number of pores per mm(3). The relationship between absorption kinetics and physical parameters enables the designing of biofoams with functionality also resembling commercial synthetic products that currently generate a high amount of nondegradable waste in our society.

  • 31.
    Galland, Sylvain
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content2014In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 6, no 22, p. 20524-20534Article in journal (Refereed)
    Abstract [en]

    A major limitation in the development of highly functional hybrid nanocomposites is brittleness and low tensile strength at high inorganic nanoparticle content. Herein, cellulose nanofibers were extracted from wood and individually decorated with cobalt-ferrite nanoparticles and then for the first time molded at low temperature (<120 degrees C) into magnetic nanocomposites with up to 93 wt % inorganic content. The material structure was characterized by TEM and FE-SEM and mechanically tested as compression molded samples. The obtained porous magnetic sheets were further impregnated with a thermosetting epoxy resin, which improved the load-bearing functions of ferrite and cellulose material. A nanocomposite with 70 wt % ferrite, 20 wt % cellulose nanofibers, and 10 wt % epoxy showed a modulus of 12.6 GPa, a tensile strength of 97 MPa, and a strain at failure of ca. 4%. Magnetic characterization was performed in a vibrating sample magnetometer, which showed that the coercivity was unaffected and that the saturation magnetization was in proportion with the ferrite content. The used ferrite, CoFe2O4 is a magnetically hard material, demonstrated by that the composite material behaved as a traditional permanent magnet. The presented processing route is easily adaptable to prepare millimeter-thick and moldable magnetic objects. This suggests that the processing method has the potential to be scaled-up for industrial use for the preparation of a new subcategory of magnetic, low-cost, and moldable objects based on cellulose nanofibers.

  • 32.
    Galland, Sylvain
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Andersson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Cellulose nanofibers decorated with magnetic nanoparticles: synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker2013In: Journal of Materials Chemistry C, ISSN 2050-7526, Vol. 1, no 47, p. 7963-7972Article in journal (Refereed)
    Abstract [en]

    Magnetic nanoparticles are the functional component for magnetic membranes, but they are difficult to disperse and process into tough membranes. Here, cellulose nanofibers are decorated with magnetic ferrite nanoparticles formed in situ which ensures a uniform particle distribution, thereby avoiding the traditional mixing stage with the potential risk of particle agglomeration. The attachment of the particles to the nanofibrils is achieved via aqueous in situ hydrolysis of metal precursors onto the fibrils at temperatures below 100 °C. Metal adsorption and precursor quantification were carried out using Induction Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). FE-SEM was used for high resolution characterization of the decorated nanofibers and hybrid membranes, and TEM was used for nanoparticle size distribution studies. The decorated nanofibers form a hydrocolloid. Large (200 mm diameter) hybrid cellulose/ferrite membranes were prepared by simple filtration and drying of the colloidal suspension. The low-density, flexible and permanently magnetized membranes contain as much as 60 wt% uniformly dispersed nanoparticles (thermogravimetric analysis data). Hysteresis magnetization was measured by a Vibrating Sample Magnetometer; the inorganic phase was characterized by XRD. Membrane mechanical properties were measured in uniaxial tension. An ultrathin prototype loudspeaker was made and its acoustic performance in terms of output sound pressure was characterized. A full spectrum of audible frequencies was resolved.

    Download full text (pdf)
    Magnetic cellulose nanofibers
  • 33.
    Galland, Sylvain
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ström, Valter
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Cellulose nanofibrils decorated by inorganic nanoparticles and used in magnetic nanocomposite membranes of high toughnessManuscript (preprint) (Other academic)
  • 34.
    Gao, Ying
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China; Institute of Zhejiang University─Quzhou, Quzhou 324000, P. R. China.
    Garemark, Jonas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Dai, Hongqi
    Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
    Ram, Farsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Gradience Free Nanoinsertion of Fe3O4 into Wood for Enhanced Hydrovoltaic Energy Harvesting2023In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 30, p. 11099-11109Article in journal (Refereed)
    Abstract [en]

    Hydrovoltaic energy harvesting offers the potential to utilize enormous water energy for sustainable energy systems. Here, we report the utilization and tailoring of an intrinsic anisotropic 3D continuous microchannel structure from native wood for efficient hydrovoltaic energy harvesting by Fe3O4 nanoparticle insertion. Acetone-assisted precursor infiltration ensures the homogenous distribution of Fe ions for gradience-free Fe3O4 nanoparticle formation in wood. The Fe3O4/wood nanocomposites result in an open-circuit voltage of 63 mV and a power density of ∼52 μW/m2 (∼165 times higher than the original wood) under ambient conditions. The output voltage and power density are further increased to 1 V and ∼743 μW/m2 under 3 suns solar irradiation. The enhancement could be attributed to the increase of surface charge, nanoporosity, and photothermal effect from Fe3O4. The device exhibits a stable voltage of ∼1 V for 30 h (3 cycles of 10 h) showing good long-term stability. The methodology offers the potential for hierarchical organic-inorganic nanocomposite design for scalable and efficient ambient energy harvesting.

  • 35. Ghaani, M.
    et al.
    Rovera, C.
    Pucillo, F.
    Ghaani, M. R.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Scampicchio, M.
    Farris, S.
    Determination of 2,4-diaminotoluene by a bionanocomposite modified glassy carbon electrode2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 277, p. 477-483Article in journal (Refereed)
    Abstract [en]

    This work describes the development of a modified glassy carbon electrode (GCE) for the selective determination of 2,4-diaminotoluene (TDA), a primary aromatic amines (PAAs) that can be formed in food packaging materials including aromatic polyurethane (PU) adhesives. The electrode's surface was modified with multi-walled carbon nanotubes (MWCNTs), MWCNTs in chitosan (CS), and gold nanoparticles (AuNPs). The highest current response was achieved with AuNPs/MWCNTs-CS/GC electrodes, which exhibited an oxidation peak of 9.87 μA by cyclic voltammetry (CV), compared with 1.39 μA of the bare GCE. A detection limit of 35 nM was estimated by amperometry experiments. The oxidation of TDA was strongly dependent on the pH of the medium, having maximum sensitivity at pH ∼ 7. From a mechanistic point of view, the diffusion coefficient of TDA (D = 6.47 × 10−4 cm2 s−1) and the number of electrons (n ≈ 2) involved in the catalytic oxidation of TDA at the surface of the AuNPs/MWCNTs-CS/GCE were determined. The practical utility of this nanocomposite modified electrode was demonstrated by migration studies from conventional food packaging materials. 

  • 36.
    Ghaani, Masoud
    et al.
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Food Packaging Lab, Via Celoria 2, I-20133 Milan, Italy..
    Pucillo, Flavia
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Food Packaging Lab, Via Celoria 2, I-20133 Milan, Italy..
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Scampicchio, Matteo
    Free Univ Bolzano, Piazza Univ 1, I-39100 Bolzano, Italy..
    Farris, Stefano
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Food Packaging Lab, Via Celoria 2, I-20133 Milan, Italy.;Univ Milan, Natl Consortium Mat Sci & Technol, INSTM, Local Unit, Via Celoria 2, I-20133 Milan, Italy..
    A bionanocomposite- modified glassy carbon electrode for the determination of 4,4 0-methylene diphenyl diamine2018In: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 10, no 34Article in journal (Refereed)
    Abstract [en]

    A nanosensor based on a glassy carbon electrode modified with the biopolymer chitosan, multi-wall carbon nanotubes, and gold nanoparticles (MWCNTs-CS-AuNPs/GCE) was developed for the determination of 4,4-diaminodiphenyl diamine (MDA). Cyclic voltammetry (CV) was used to investigate the electrochemical behavior of the sensor in the presence of MDA. MDA displayed a well-expressed oxidation peak at 0.54 V (versus Ag/AgCl) in Britton-Robinson (B-R) universal buffer solution (pH = 10). The transfer coefficient, , and the overall number of electrons (n) involved in the catalytic oxidation of MDA at the MWCNTs-CS-AuNPs/GCE surface were also determined by CV. The reactivity of spiked MDA was strongly dependent on the pH of the supporting electrolyte, with the pH dependence of the MDA oxidation quantified as 27.576 mV pH(-1). Through chronoamperometry, the diffusion coefficient (D) of MDA was calculated to be 9.49 x 10(-5) cm(2) s(-1). The limit of detection of MDA was estimated to be approximate to 20 nM through amperometry experiments, while three linear ranges were found for MDA, i.e., 0.49-10.14 M, 10.14-94.9 M, and 94.9-261.18 M. Real sample tests enabled us to emphasize the potential of this nanocomposite-modified electrode as a new analytical tool for the determination of MDA.

  • 37. González-Ausejo, J.
    et al.
    Sanchez-Safont, E.
    Lagaron, J. M.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gamez-Perez, J.
    Cabedo, L.
    Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates2017In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 62, p. 235-245Article in journal (Refereed)
    Abstract [en]

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a renewable alternative to conventional barrier packaging polymers due to its thermoplastic properties, biodegradability and gas barrier performance but its potential industrial applications are limited by its high price and difficult processability. A thorough study concerning the thermoforming ability of PHBV, and blends with poly(lactic acid) (PLA) incorporating three different diisocyanates as compatibilizers (hexamethylene diisocyanate, poly(hexamethylene) diisocyanate and 1,4-phenylene diisocyanate) is herein presented after component melt blending. A straightforward universal qualitative method is proposed to assess the thermoformability, based on a visual inspection of a thermoformed specimen and the ability to reproduce the mold shape, and the thermoforming window of the material. The results reveal a significant improvement in the thermoforming capacity and a widening of the thermoforming windows as the correct amounts of diisocyanates are incorporated. The barrier properties and the biodisintegrability of the blends was also studied, confirming a predictable slight decrease of the barrier performance when PLA is added, but without negatively affecting the disintegrability under composting conditions with respect to pristine PHBV.

  • 38.
    Guex, Leonard Gaston
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Sacchi, B.
    Peuvot, Kevin F.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Farris, S.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 27, p. 9562-9571Article, review/survey (Refereed)
    Abstract [en]

    The electrical conductivity of reduced graphene oxide (rGO) obtained from graphene oxide (GO) using sodium borohydride (NaBH4) as a reducing agent has been investigated as a function of time (2 min to 24 h) and temperature (20 degrees C to 80 degrees C). Using a 300 mM aqueous NaBH4 solution at 80 degrees C, reduction of GO occurred to a large extent during the first 10 min, which yielded a conductivity increase of 5 orders of magnitude to 10 S m(-1). During the residual 1400 min of reaction, the reduction rate decreased significantly, eventually resulting in a rGO conductivity of 1500 S m(-1). High resolution XPS measurements showed that C/O increased from 2.2 for the GO to 6.9 for the rGO at the longest reaction times, due to the elimination of oxygen. The steep increase in conductivity recorded during the first 8-12 min of reaction was mainly due to the reduction of C-O (e.g., hydroxyl and epoxy) groups, suggesting the preferential attack of the reducing agent on C-O rather than C=O groups. In addition, the specular variation of the percentage content of C-O bond functionalities with the sum of Csp(2) and Csp(3) indicated that the reduction of epoxy or hydroxyl groups had a greater impact on the restoration of the conductive nature of the graphite structure in rGO. These findings were reflected in the dramatic change in the structural stability of the rGO nanofoams produced by freeze-drying. The reduction protocol in this study allowed to achieve the highest conductivity values reported so far for the aqueous reduction of graphene oxide mediated by sodium borohydride. The 4-probe sheet resistivity approach used to measure the electrical conductivity is also, for the first time, presented in detail for filtrate sheet assemblies' of stacked GO/rGO sheets.

  • 39.
    Holder, Shima L.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Karlsson, Mattias E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Solubility and Diffusivity of Polar and Non-Polar Molecules in Polyethylene-Aluminum Oxide Nanocomposites for HVDC Applications2020In: Energies, E-ISSN 1996-1073, Vol. 13, no 3, p. 722-Article in journal (Refereed)
    Abstract [en]

    The best commercial high-voltage insulation material of today is (crosslinked) ultra-pure low-density polyethylene (LDPE). A 100-fold decrease in electrical conductivity can be achieved by adding 1–3 wt.% of well-dispersed inorganic nanoparticles to the LDPE. One hypothesis is that the nanoparticle surfaces attract ions and polar molecules, thereby cleaning the surrounding polymer, and thus reducing the conductivity. LDPE-based nanocomposites with 1–12 wt.% octyl-coated aluminum oxide nanoparticles were prepared and the sorption and desorption of one polar compound (acetophenone, a crosslinking by-product) and one non-polar compound of a similar size (limonene) were examined. Since the uptake of acetophenone increased linearly with increasing filler content, whereas the uptake of limonene decreased, the surface attraction hypothesis was strengthened. The analytical functions for predicting composite solubility as a function of particle size and filler fraction were derived using experimental solubility measurements and Monte Carlo simulations.

  • 40.
    Hoogendoorn, Billy W.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Birdsong, Björn K.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Xiao, Xiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Ultra-low Concentration of Cellulose Nanofibers (CNFs) for Enhanced Nucleation and Yield of ZnO Nanoparticles2022In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 38, no 41, p. 12480-12490Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibers (CNFs) were used in aqueous synthesis protocols for zinc oxide (ZnO) to affect the formation of the ZnO particles. Different concentrations of CNFs were evaluated in two different synthesis protocols producing distinctly different ZnO morphologies (flowers and sea urchins) as either dominantly oxygen-or zinc-terminated particles. The CNF effects on the ZnO formation were investigated by implementing a heat-treatment method at 400 degrees C that fully removed the cellulose material without affecting the ZnO particles made in the presence of CNFs. The inorganic phase formations were monitored by extracting samples during the enforced precipitations to observe changes in the ZnO morphologies. A decrease in the size of the ZnO particles could be observed for all synthesis protocols, already occurring at small additions of CNFs. At as low as 0.1 g/L CNFs, the particle size decreased by 50% for the flower-shaped particles and 45% for the sea-urchin-shaped particles. The formation of smaller particles was accompanied by increased yield by 13 and 15% due to the CNFs' ability to enhance the nucleation, resulting in greater mass of ZnO divided among a larger number of particles. The enhanced nucleation could also be verified as useful for preventing secondary morphologies from forming, which grew on the firstly precipitated particles. The suppression of secondary growths' was due to the more rapid inorganic phase formation during the early phases of the reactions and the faster consumption of dissolved salts, leaving smaller amounts of metal salts present at later stages of the reactions. The findings show that using cellulose to guide inorganic nanoparticle growth can be predicted as an emerging field in the preparation of functional inorganic micro/nanoparticles. The observations are highly relevant in any industrial setting for the large-scale and resource-efficient production of ZnO.

    Download full text (pdf)
    fulltext
  • 41.
    Hoogendoorn, Billy W.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Jesus Parra Gil, Mariano
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Xiao, Xiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Cellulose-assisted electrodeposition of zinc for morphological control in battery metal recycling2022In: Materials Advances, E-ISSN 2633-5409Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibers (CNF) are demonstrated as an effective tool for converting electrodeposits into more easily detachable dendritic deposits useful in recycling zinc ion batteries via electrowinning. The incorporation of CNF at concentrations ranging from 0.01 to 0.5 g/L revealed a progressively extensive formation of a nacre-like dendritic zinc structure that did not form in its absence. Increasing CNF-concentrations from 0.01 to 0.5 g/L resulted in more extensive dendritic structures forming. The explanation to the observed phenomenon is the CNFs ability to strongly interact with the metal ions, i.e., restricting the mobility of the ions towards the electrowinning electrode. At the highest concentration of CNF (0.5 g/L), in combination with the lowest current density (150 A/m2), the electrodeposition was limited to the extent that formed deposits were almost non-existent. The electrodeposition in the presence of CNF was further evaluated at different temperatures: 20, 40 and 60°C. The dendritic formation was increasingly suppressed with increasing temperatures, and at a temperature of 60°C, the electrodeposited morphologies could not be differentiated from the morphologies formed in the absence of the cellulose. The results stemmed from a greater mobility of the metal ions at elevated temperatures, while at the same time suggests an inability of the CNF to strongly associate the metal ions at the elevated temperatures. High-pressure blasted titanium electrodes were used a reference material for accurate comparisons, and electron microscopy (FE-SEM) and X-ray diffraction were used to characterize the zinc morphologies and crystallite sizes, respectively. The article reports the first investigation on how dispersions of highly crystalline cellulose nanofibers can be used as a renewable and functional additive during the recycling of battery metal ions. The metal-ion/cellulose interactions may also allow for structural control in electrodeposition for other applications. 

     

    Download full text (pdf)
    fulltext
  • 42.
    Hoogendoorn, Billy W.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Karlsson, Oskar
    Xiao, Xiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Pandey, Annu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mattsson, Sven-Erik
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    The Impact of Cellulose Nanofibers (CNFs) on the Electrodeposition of Nickel and Cadmium in Ni-Cd Battery RecyclingManuscript (preprint) (Other academic)
  • 43.
    Hoogendoorn, Billy W.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Xiao, Xiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Polisetti, Veerababu
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Tjus, Kåre
    IVL Svenska Miljöinstitutet.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Formation of Different Zinc Oxide Crystal Morphologies Using Cellulose as Nucleation Agent in the Waste Valorization and Recycling of Zn-Ion Batteries2023In: Rare Metal Technology 2023, Springer, 2023Conference paper (Refereed)
    Abstract [en]

    The formation of zinc oxide particles of different hierarchical morphologies was investigated. By performing elemental analysis on samples extracted from the supernatant solution during precipitations yielding two distinctly different morphologies, the consumption of zinc ions was used to follow the liquid-to-solid phase formation. While a rapid Zn-ion consumption was synonymous with the formation of predominantly oxygen terminated flower-shaped ZnO-particles, with half of the zinc ions being precipitated during the first minute, less than 10% of the zinc ions were converted to sea urchin-shaped ZnO-particles (with mixed terminations) after 1 min of the reaction. The unique ZnO-particle morphologies may therefore be related to the precipitation rates, which can be further explored as a tool for understanding how ZnO-particles with differently facetted surfaces form. Interestingly, the different formation rates remained with identical patterns when 0.5 g/L cellulose (0.005 wt%) was added to the reactions as nucleating agent for improved yields. The controlled formation of specific functional ZnO-particle surfaces is an important method for recycling inexpensive zinc waste from batteries to high value materials useful in a variety of catalytic applications.

  • 44. Jänis, A.
    et al.
    Olsson, Richard
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Savage, S. J.
    Klement, U.
    Microwave absorbing properties of structural nanocomposites with surface treated Co ferrite nanoparticles as filler2010In: Behavior And Mechanics Of Multifunctional Materials And Composites 2010, SPIE - International Society for Optical Engineering, 2010, p. 76441E-Conference paper (Refereed)
    Abstract [en]

    An analysis of the microwave absorbing properties of several polymer-(epoxy) based nanocomposites is presented. The nanoparticles of interest for this study were cobalt ferrite nanoparticles. For better dispersion of the nanoparticles in the polymer matrix surface treatment of the nanoparticles with silane compounds was performed. The nanoparticles were surface-treated with 3-glycidoxypropyl- (GPTMS), aminopropyl- (APTMS) or methyl-silsesquioxane (MTMS). The nanoparticles with GPTMS-coating dispersed well in epoxy without sedimentation while the other nanoparticles formed agglomerates in epoxy. The GPTMS-based composites showed higher fracture toughness than the MTMS-based composites. The microwave properties, permittivity and permeability, of GPTMS-based composites were measured in the frequency range between 3.95 GHz and 18 GHz and showed no influence of surface treatment on permeability.

  • 45. Jänis, A.
    et al.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Savage, S. J.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Klement, U.
    Microwave absorbing properties of ferrite-based nanocomposites2007In: Behavior and Mechanics of Multifunctional and Composite Materials 2007, SPIE - International Society for Optical Engineering, 2007, p. 65261P-Conference paper (Refereed)
    Abstract [en]

    A study of the microwave absorbing properties of polymer (epoxy) based nanocomposites is presented. The ferrite nanoparticles employed as filler materials were produced by a co-precipitation method, which was designed for production of large amounts at low cost. The absorbing properties of different kinds of ferrite nanoparticles, soft (manganese) and hard (cobalt) magnetic nanoparticles, are compared. In addition, the impact of high and low densities of the respective ferrite type has been investigated. Our analysis of the microwave absorbing properties is made over a wide frequency band including both MHz and GHz regions, which is of high interest for a number of different applications both military and civilian.

  • 46.
    Karlsson, Mattias E.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Calamida, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Forchheimer, Daniel
    KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Hillborg, H.
    ABB Power Grids Res, SE-72178 Västerås, Sweden..
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Gardner, James M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    The effect of ZnO particle lattice termination on the DC conductivity of LDPE nanocomposites2020In: Materials Advances, E-ISSN 2633-5409, Vol. 1, no 6, p. 1653-1664Article in journal (Refereed)
    Abstract [en]

    The effects of particle surface termination by zinc or oxygen were evaluated for composites containing micro-sized ZnO particles with rod shapes (17% oxygen terminations) or ball shapes (67% oxygen terminations), and it was found that the rods gave a conductivity (1.2 x 10(-16) S m(-1)) half that given by the ball-shaped particles (2.4 x 10(-16) S m(-1)). Both composites containing the micro-sized particles showed a conductivity almost two orders of magnitude lower than that of the LDPE reference material (1.2 x 10(-14) S m(-1)). When a 5 nm thick silica coating was applied to the particles, the silica encapsulation eliminated the difference between the particles and resulted in both cases in an increase in conductivity by an order of magnitude to ca. 2 x 10(-15) S m(-1). The conductivity was still lower than that of the pristine polyethylene polymer. It was concluded that neither the particle morphology nor the inter-particle distance (1 mu m for rods and 8 mu m for balls) had any effect on the conductivity of the composites for identically terminated particles, while demonstrating that the conductivity of these materials relies uniquely on the particle surface terminations. In contrast, a markedly reduced conductivity was observed for composites containing the same particles but terminated with aliphatic hydrocarbon tails, the conductivity for both rod-shaped and ball-shaped particles (1 x 10(-16) S m(-1)) being reduced to even lower values than for the pristine particles without surface modification. The same trend was observed with the 25 nm ZnO nanoparticles, showing a record low conductivity of 1 x 10(-17) S m(-1) for 3 wt% nanoparticles with aliphatic hydrocarbon tails. In practical applications, this would permit higher operation voltages than currently employed HVDC cable systems by controlling the resistivity of the composite insulation for various electric fields and temperatures and making it possible to tailor the dielectric design of cable components.

  • 47.
    Karlsson, Mattias E.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mamie, Yann C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Calamida, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Pourrahimi, Amir Masoud
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Synthesis of Zinc Oxide Nanorods via the Formation of Sea Urchin Structures and Their Photoluminescence after Heat Treatment2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 17, p. 5079-5087Article in journal (Refereed)
    Abstract [en]

    A protocol for the aqueous synthesis of ca. 1-mu m-long zinc oxide (ZnO) nanorods and their growth at intermediate reaction progression is presented, together with photoluminescence (PL) characteristics after heat treatment at temperatures of up to 1000 degrees C. The existence of solitary rods after the complete reaction (60 min) was traced back to the development of sea urchin structures during the first 5 s of the precipitation. The rods primarily formed in later stages during the reaction due to fracture, which was supported by the frequently observed broken rod ends with sharp edges in the final material, in addition to tapered uniform rod ends consistent with their natural growth direction. The more dominant rod growth in the c direction (extending the length of the rods), together with the appearance of faceted surfaces on the sides of the rods, occurred at longer reaction times (>5 min) and generated zinc-terminated particles that were more resistant to alkaline dissolution. A heat treatment for 1 h at 600 or 800 degrees C resulted in a smoothing of the rod surfaces, and PL measurements displayed a decreased defect emission at ca. 600 nm, which was related to the disappearance of lattice imperfections formed during the synthesis. A heat treatment at 1000 degrees C resulted in significant crystal growth reflected as an increase in luminescence at shorter wavelengths (ca. 510 nm). Electron microscopy revealed that the faceted rod structure was lost for ZnO rods exposed to temperatures above 600 degrees C, whereas even higher temperatures resulted in particle sintering and/or mass redistribution along the initially long and slender ZnO rods. The synthesized ZnO rods were a more stable Wurtzite crystal structure than previously reported ball-shaped ZnO consisting of merging sheets, which was supported by the shifts in PL spectra occurring at ca. 200 degrees C higher annealing temperature, in combination with a smaller thermogravimetric mass loss occurring upon heating the rods to 800 degrees C.

  • 48.
    Karlsson, Mattias E.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Xu, Xiangdong
    Chalmers Univ Technol, Dept Mat & Mfg Technol, SE-41296 Gothenburg, Sweden..
    Hillborg, Henrik
    ABB Power Grids Res, S-72178 Vasteras, Sweden..
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Lamellae-controlled electrical properties of polyethylene - morphology, oxidation and effects of antioxidant on the DC conductivity2020In: RSC Advances, E-ISSN 2046-2069, Vol. 10, no 8, p. 4698-4709Article in journal (Refereed)
    Abstract [en]

    Destruction of the spherulite structure in low-density polyethylene (LDPE) is shown to result in a more insulating material at low temperatures, while the reverse effect is observed at high temperatures. On average, the change in morphology reduced the conductivity by a factor of 4, but this morphology-related decrease in conductivity was relatively small compared with the conductivity drop of more than 2 decades that was observed after slight oxidation of the LDPE (at 25 degrees C and 30 kV mm(-1)). The conductivity of LDPE was measured at different temperatures (25-60 degrees C) and at different electrical field strengths (3.3-30 kV mm(-1)) for multiple samples with a total crystalline content of 51 wt%. The transformation from a 5 mu m coherent structure of spherulites in the LDPE to an evenly dispersed random lamellar phase (with retained crystallinity) was achieved by extrusion melt processing. The addition of 50 ppm commercial phenolic antioxidant to the LDPE matrix (e.g. for the long-term use of polyethylene in high voltage direct current (HVDC) cables) gave a conductivity ca. 3 times higher than that of the same material without antioxidants at 60 degrees C (the operating temperature for the cables). For larger amounts of antioxidant up to 1000 ppm, the DC conductivity remained stable at ca. 1 x 10(-14) S m(-1). Finite element modeling (FEM) simulations were carried out to model the phenomena observed, and the results suggested that the higher conductivity of the spherulite-containing LDPE stems from the displacement and increased presence of polymeric irregularities (formed during crystallization) in the border regions of the spherulite structures.

  • 49.
    Källbom, Susanna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Helgesson, Daniel
    Autoform & Malung AB, Malung, Sweden.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Vacuum formed bio-based composite materials using polyolefin and thermally modified wood powder2022In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 139, no 29, article id e52630Article in journal (Refereed)
    Abstract [en]

    For climate and sustainability reasons, there is an interest and incentive to produce plastic and rubber products with increased content of a bio-based component, preferably existing as an industrial by-product, for example, wood powder/sawdust. There are many studies on the making of wood-plastic composites, but hitherto very few consider vacuum forming as a processing technique, especially considering a biofiller. Here, the properties of a vacuum formed composite with thermally modified wood powder (with reduced water uptake) and a very ductile polyolefin, was reported. Surprisingly, even at a 15 wt% filler content, the composite remained ductile (extensibility of ca. 30%). The water uptake increased with increasing content of wood powder, but was never more than 5%. The water sorption kinetics indicated that the wood powder did not form a percolated continuous path through the material for easy access to the water, which led to a low water diffusivity (ca. 2 × 10−10 cm2 s−1). The calorimetric data showed that the biofiller, overall, did not affect the melting and crystallization behavior of the polymer matrix, nor the observed glass transition temperature. To conclude, vacuum forming was shown to be a viable technique for composites with a very ductile/elastic matrix and stiff fillers.

  • 50.
    Liu, Dongming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hoang, A. T.
    Pourrahimi, Amir Masoud
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pallon, Love K. H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nilsson, Fritjof
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gubanski, S. M.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Influence of Nanoparticle Surface Coating on Electrical Conductivity of LDPE/Al2O3 Nanocomposites for HVDC Cable Insulations2017In: IEEE transactions on dielectrics and electrical insulation, ISSN 1070-9878, E-ISSN 1558-4135, Vol. 24, no 3, p. 1396-1404Article in journal (Refereed)
    Abstract [en]

    LDPE/metal oxide nanocomposites are promising materials for future high-voltage DC cable insulation. This paper presents data on the influence of the structure of the nanoparticle coating on the electrical conductivity of LDPE/Al2O3 nanocomposites. Al2O3 nanoparticles, 50 nm in size, were coated with a series of silanes with terminal alkyl groups of different lengths (methyl, n-octyl and n-octadecyl groups). The density of the coatings in vacuum was between 200 and 515 kg m(-3,) indicating substantial porosity in the coating. The dispersion of the nanoparticles in the LDPE matrix was assessed based on statistics for the nearest-neighbor particle distance. The electrical conductivity of the nanocomposites was determined at both 40 and 60 degrees C. The results show that an appropriate surface coating on the nanoparticles allowed uniform particle dispersion up to a filler loading of 10 wt.%, with a maximum reduction in the electrical conductivity by a factor of 35. The composites based on the most porous octyl-coated nanoparticles showed the greatest reduction in electrical conductivity and the lowest temperature coefficient of electrical conductivity of the composites studied.

123 1 - 50 of 136
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf