Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Battista, F.
    et al.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Troiani, G.
    Casciola, C. M.
    Direct numerical simulation of hydrogen-carbon monoxide turbulent premixed flame2015In: 9th International Conference on Direct and Large-Eddy Simulation, 2013, Springer Publishing Company, 2015, p. 541-546Conference paper (Refereed)
  • 2. Battista, F.
    et al.
    Troiani, G.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Fractal scaling of turbulent premixed flame fronts: Application to LES2015In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 51, p. 78-87Article in journal (Refereed)
    Abstract [en]

    The fractal scaling properties of turbulent premixed flame fronts have been investigated and considered for modeling sub-grid scales in the Large-Eddy-Simulation framework. Since the width of such thin reaction fronts cannot be resolved into the coarse mesh of LES, the extent of wrinkled flame surface contained in a volume is taken into account. The amount of unresolved flame front is estimated via the "wrinkling factor" that depends on the definition of a suitable fractal dimension and the scale at which the fractal scaling is lost, the inner cut-off length e. In this context, the present study considers laboratory experiments and one-step reaction DNS of turbulent premixed jet flames in different regimes of turbulent premixed flames. Fractal dimension is found to be substantially constant and well below that typical of passive scalar fronts. The inner cut-off length shows a clear scaling with the dissipative scale of Kolmogorov for the regimes here considered. These features have been exploited performing Large Eddy Simulations. Good model performance has been found comparing the LES against a corresponding DNS at moderate Reynolds number and experimental data at higher Reynolds numbers.

  • 3.
    Bäbler, Matthäus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Biferale, Luca
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Feudel, Ulrike
    Guseva, Ksenia
    Lanotte, Alessandra S.
    Marchioli, Cristian
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. University of Padua, Italy.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Soldati, Alfredo
    Toschi, Federico
    Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows2015In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 766Article in journal (Refereed)
    Abstract [en]

    Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress sigma similar to epsilon(1/2), with epsilon being the energy dissipation at the position of the aggregate, overcomes a given threshold sigma(cr), which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.

  • 4. Gualtieri, P.
    et al.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Casciola, C. M.
    Clustering and turbulence modulation in particle-laden shear flows2013In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 715, p. 134-162Article in journal (Refereed)
    Abstract [en]

    Turbulent fluctuations induce the common phenomenon known as clustering in the spatial arrangement of small inertial particles transported by the fluid. Particles spread non-uniformly, and form clusters where their local concentration is much higher than in nearby rarefaction regions. The underlying physics has been exhaustively analysed in the so-called one-way coupling regime, i.e. negligible back-reaction of the particles on the fluid, where the mean flow anisotropy induces preferential orientation of the clusters. Turbulent transport in suspensions with significant mass in the disperse phase, i.e. particles back-reacting in the carrier phase (the two-way coupling regime), has instead been much less investigated and is still poorly understood. The issue is discussed here by addressing direct numerical simulations of particle-laden homogeneous shear flows in the two-way coupling regime. Consistent with previous findings, we observe an overall depletion of the turbulent fluctuations for particles with response time of the order of the Kolmogorov time scale. The depletion occurs in the energy-containing range, while augmentation is observed in the small-scale range down to the dissipative scales. Increasing the mass load results in substantial broadening of the energy cospectrum, thereby extending the range of scales driven by anisotropic production mechanisms. As discussed throughout the paper, this is due to the clusters which form the spatial support of the back-reaction field and give rise to a highly anisotropic forcing, active down to the smallest scales. A certain impact on two-phase flow turbulence modelling is expected from the above conclusions, since the frequently assumed small-scale isotropy is poorly recovered when the coupling between the phases becomes significant.

  • 5.
    Lambert, Ruth A.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Breugem, Wim-Paul
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Active suspensions in thin films: nutrient uptake and swimmer motion2013In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 733, p. 528-557Article in journal (Refereed)
    Abstract [en]

    A numerical study of swimming particle motion and nutrient transport is conducted for a semidilute to dense suspension in a thin film. The steady squirmer model is used to represent the motion of living cells in suspension with the nutrient uptake by swimming particles modelled using a first-order kinetic equation representing the absorption process that occurs locally at the particle surface. An analysis of the dynamics of the neutral squirmers inside the film shows that the vertical motion is reduced significantly. The mean nutrient uptake for both isolated and populations of swimmers decreases for increasing swimming speeds when nutrient advection becomes relevant as less time is left for the nutrient to diffuse to the surface. This finding is in contrast to the case where the uptake is modelled by imposing a constant nutrient concentration at the cell surface and the mass flux results to be an increasing monotonic function of the swimming speed. In comparison to non-motile particles, the cell motion has a negligible influence on nutrient uptake at lower particle absorption rates since the process is rate limited. At higher absorption rates, the swimming motion results in a large increase in the nutrient uptake that is attributed to the movement of particles and increased mixing in the fluid. As the volume fraction of swimming particles increases, the squirmers consume slightly less nutrients and require more power for the same swimming motion. Despite this increase in energy consumption, the results clearly demonstrate that the gain in nutrient uptake make swimming a winning strategy for micro-organism survival also in relatively dense suspensions.

  • 6.
    Lashgari, Iman
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Transition and self-sustained turbulence in dilute suspensions of finite-size particles2015In: Theoretical and Applied Mechanics Letters, ISSN 2095-0349, Vol. 5, p. 121-125Article in journal (Refereed)
    Abstract [en]

    We study the transition to turbulence of channel flow of finite-size particle suspensions at low volume fraction, i.e., Φ ≈ 0.001. The critical Reynolds number above which turbulence is sustained reduces to Re ≈ 1675, in the presence of few particles, independently of the initial condition, a value lower than that of the corresponding single-phase flow, i.e., Re ≈ 1775. In the dilute suspension, the initial arrangement of the particles is important to trigger the transition at a fixed Reynolds number and particle volume fraction. As in single phase flows, streamwise elongated disturbances are initially induced in the flow. If particles can induce oblique disturbances with high enough energy within a certain time, the streaks breakdown, flow experiences the transition to turbulence and the particle trajectories become chaotic. Otherwise, the streaks decay in time and the particles immigrate towards the channel core in a laminar flow. 

  • 7.
    Lashgari, Iman
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. University of Padova, Italy.
    Breugem, W. -P
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Transition to Turbulence in the Presence of Finite Size Particles2015In: Procedia IUTAM, Elsevier, 2015, p. 211-217Conference paper (Refereed)
    Abstract [en]

    We study the transition from laminar to turbulent flow in a channel seeded with finite-size neutrally buoyant particles. A fixed ratio of 10 between the channel height and the particle diameter is considered. The flow is examined in the range of Reynolds numbers 500 ≤ Re ≤; 5000 and the particle volume fractions 0.001 ≤ Φ ≤; 0.3. We report a non-monotonic behavior of the threshold value of the Reynolds number above which the flow becomes turbulent, in agreement with previous experimental studies. The mean square velocity fluctuations and Reynolds shear stress of the fluid phase are reduced by increasing the particle volume fraction at a fixed Re=1500, while the mean square velocities of the solid phase are enhanced monotonically suggesting a transition from fluid to particle dominated dynamics at high volume fraction.

  • 8.
    Lashgari, Iman
    et al.
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. University of Padova, Italy.
    Breugem, Wim Paul
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Channel flow of rigid sphere suspensions: Particle dynamics in the inertial regime2016In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 78, p. 12-24Article in journal (Refereed)
    Abstract [en]

    We consider suspensions of neutrally-buoyant finite-size rigid spherical particles in channel flow and investigate the relation between the particle dynamics and the mean bulk behavior of the mixture for Reynolds numbers 500 ≤ Re ≤ 5000 and particle volume fraction 0 ≤ Φ ≤ 0.3, via fully resolved numerical simulations. Analysis of the momentum balance reveals the existence of three different regimes: laminar, turbulent and inertial shear-thickening depending on which of the stress terms, viscous, Reynolds or particle stress, is the major responsible for the momentum transfer across the channel. We show that both Reynolds and particle stress dominated flows fall into the Bagnoldian inertial regime and that the Bagnold number can predict the bulk behavior although this is due to two distinct physical mechanisms. A turbulent flow is characterized by larger particle dispersion and a more uniform particle distribution, whereas the particulate-dominated flows is associated with a significant particle migration towards the channel center where the flow is smooth laminar-like and dispersion low. Interestingly, the collision kernel shows similar values in the different regimes, although the relative particle velocity and clustering clearly vary with inertia and particle concentration.

  • 9.
    Lashgari, Iman
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Department of Physics, Sapienza University of Rome, Italy .
    Breugem, Wim-Paul
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Laminar, Turbulent, and Inertial Shear-Thickening Regimes in Channel Flow of Neutrally Buoyant Particle Suspensions2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 113, no 25, p. 254502-Article in journal (Refereed)
    Abstract [en]

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

  • 10. Magaletti, F.
    et al.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Chinappi, M.
    Marino, L.
    Casciola, C. M.
    The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids2013In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 714, p. 95-126Article in journal (Refereed)
    Abstract [en]

    The Cahn-Hilliard model is increasingly often being used in combination with the incompressible Navier-Stokes equation to describe unsteady binary fluids in a variety of applications ranging from turbulent two-phase flows to microfluidics. The thickness of the interface between the two bulk fluids and the mobility are the main parameters of the model. For real fluids they are usually too small to be directly used in numerical simulations. Several authors proposed criteria for the proper choice of interface thickness and mobility in order to reach the so-called 'sharp-interface limit'. In this paper the problem is approached by a formal asymptotic expansion of the governing equations. It is shown that the mobility is an effective parameter to be chosen proportional to the square of the interface thickness. The theoretical results are confirmed by numerical simulations for two prototypal flows, namely capillary waves riding the interface and droplets coalescence. The numerical analysis of two different physical problems confirms the theoretical findings and establishes an optimal relationship between the effective parameters of the model.

  • 11. Nowbahar, Arash
    et al.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Turbophoresis attenuation in a turbulent channel flow with polymer additives2013In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 732, p. 706-719Article in journal (Refereed)
    Abstract [en]

    Turbophoresis occurs in wall-bounded turbulent flows where it induces a preferential accumulation of inertial particles towards the wall and is related to the spatial gradients of the turbulent velocity fluctuations. In this work, we address the effects of drag-reducing polymer additives on turbophoresis in a channel flow. The analysis is based on data from a direct numerical simulation of the turbulent flow of a viscoelastic fluid modelled with the FENE-P closure and laden with particles of different inertia. We show that polymer additives decrease the particle preferential wall accumulation and demonstrate with an analytical model that the turbophoretic drift is reduced because the wall-normal variation of the wall-normal fluid velocity fluctuations decreases. As this is a typical feature of drag reduction in turbulent flows, an attenuation of turbophoresis and a corresponding increase in the particle streamwise flux are expected to be observed in all of these flows, e. g. fibre or bubble suspensions and magnetohydrodynamics.

  • 12. Olivieri, S.
    et al.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Iudicone, D.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence2014In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 26, no 4, p. 041704-Article in journal (Refereed)
    Abstract [en]

    We study the effect of the Basset history force on the dynamics of small particles transported in homogeneous and isotropic turbulence and show that this term, often neglected in previous numerical studies, reduces the small-scale clustering typical of inertial particles. The contribution of this force to the total particle acceleration is, on average, responsible for about 10% of the total acceleration and particularly relevant during rare strong events. At moderate density ratios, i.e., sand or metal powder in water, its presence alters the balance of forces determining the particle acceleration.

  • 13.
    Picano, Francesco
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Breugem, Wim-Paul
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Turbulent channel flow of dense suspensions of neutrally buoyant spheres2015In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 764, p. 463-487Article in journal (Refereed)
    Abstract [en]

    Dense particle suspensions are widely encountered in many applications and in environmental flows. While many previous studies investigate their rheological properties in laminar flows, little is known on the behaviour of these suspensions in the turbulent/inertial regime. The present study aims to fill this gap by investigating the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres at relatively high volume fractions in a plane channel. Direct numerical simulation (DNS) are performed in the range of volume fractions Phi=0-0.2 with an immersed boundary method (IBM) used to account for the dispersed phase. The results show that the mean velocity profiles are significantly altered by the presence of a solid phase with a decrease of the von Karman constant in the log-law. The overall drag is found to increase with the volume fraction, more than one would expect if just considering the increase of the system viscosity due to the presence of the particles. At the highest volume fraction investigated here, Phi = 0.2, the velocity fluctuation intensities and the Reynolds shear stress are found to decrease. The analysis of the mean momentum balance shows that the particle-induced stresses govern the dynamics at high Phi and are the main responsible of the overall drag increase. In the dense limit, we therefore find a decrease of the turbulence activity and a growth of the particle induced stress, where the latter dominates for the Reynolds numbers considered here.

  • 14.
    Picano, Francesco
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Breugem, Wim-Paul
    Mitra, Dhrubaditya
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Shear Thickening in Non-Brownian Suspensions: An Excluded Volume Effect2013In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 111, no 9, p. 098302-Article in journal (Refereed)
    Abstract [en]

    Shear thickening appears as an increase of the viscosity of a dense suspension with the shear rate, sometimes sudden and violent at high volume fraction. Its origin for noncolloidal suspension with non-negligible inertial effects is still debated. Here we consider a simple shear flow and demonstrate that fluid inertia causes a strong microstructure anisotropy that results in the formation of a shadow region with no relative flux of particles. We show that shear thickening at finite inertia can be explained as an increase of the effective volume fraction when considering the dynamically excluded volume due to these shadow regions.

  • 15.
    Picano, Francesco
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Dip. Ingegneria Meccanica e Aerospaziale, “La Sapienza” University of Rome, Rome, Italy.
    Hanjalić, K.
    Leray-alpha Regularization of the Smagorinsky-Closed Filtered Equations for Turbulent Jets at High Reynolds Numbers2012In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 89, no 4, p. 627-650Article in journal (Refereed)
    Abstract [en]

    The article reports on blending of the Leray-alpha regularization with the conventional Smagorinsky subgrid-scale closure as an option for large-eddy-simulation of turbulent flows at very high Reynolds number on coarse meshes. The model has been tested in the self-similar far-field region of a jet at a range of Reynolds numbers spanning over two decades (4x10(3), 4x10(4) and 4x10(5)) on two very coarse meshes of 2x10(5) and 3x10(4) mesh cells. The results are compared with the well-resolved DNS for Re-D = 4 x 10(3) on 15 million cells and experimental data for higher Re numbers. While the pure Leray-alpha can fail badly at high Re numbers on very coarse meshes, a blending of the two strategies by adding a small amount of extra-dissipation performs well even at a huge jet Reynolds number of Re-D = 4 x 10(5) on a very coarse mesh (2x10(5) cells), despite the ratio of the typical mesh spacing to the Kolmogorov length exceeding 300. It is found that the main prerequisite for successful LES, both for the classic Smagorinsky and the blended Leray-alpha/Smagorinsky model, is to resolve the shear-length L-s = root epsilon/delta(3) (where is the shear-rate modulus), defined by the constraint Delta/L-s < 1, where Delta is the typical mesh-cell size. For the mixed Leray-alpha/Smagorinsky model the regularization parameter should also be related to the shear-length rather than the local mesh size or Reynolds number, for which we propose a guide criterion alpha = 0.15 divided by 0.3 L-s .

  • 16. Sardina, Gaetano
    et al.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Caballero, Rodrigo
    Continuous Growth of Droplet Size Variance due to Condensation in Turbulent Clouds2015In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 115, no 18, article id 184501Article in journal (Refereed)
    Abstract [en]

    We use a stochastic model and direct numerical simulation to study the impact of turbulence on cloud droplet growth by condensation. We show that the variance of the droplet size distribution increases in time as t(1/2), with growth rate proportional to the large-to-small turbulent scale separation and to the turbulence integral scales but independent of the mean turbulent dissipation. Direct numerical simulations confirm this result and produce realistically broad droplet size spectra over time intervals of 20 min, comparable with the time of rain formation.

  • 17.
    Sardina, Gaetano
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Casciola, C. M.
    Statistics of Particle Accumulation in Spatially Developing Turbulent Boundary Layers2014In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 92, no 1-2, p. 27-40Article in journal (Refereed)
    Abstract [en]

    We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re (theta) = 2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.

  • 18.
    Sardina, Gaetano
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Casciola, Carlo
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Henningson, Dan Stafan
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Self-similar transport of inertial particles in a turbulent boundary laye2012In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 706, p. 584-596Article in journal (Refereed)
    Abstract [en]

    Results are presented from a direct numerical simulation of a particle-laden spatially developing turbulent boundary layer up to Re-theta = 2500. The peculiar feature of a boundary-layer flow seeded with heavy particles is the variation of the local dimensionless parameters defining the fluid-particle interactions along the streamwise direction. Two different Stokes numbers can be defined, one using inner flow units and the other with outer units. Since these two Stokes numbers exhibit different decay rates in the streamwise direction, we find a decoupled particle dynamics between the inner and the outer region of the boundary layer. Preferential near-wall particle accumulation is similar to that observed in turbulent channel flow, while different behaviour characterizes the outer region. Here the concentration and the streamwise velocity profiles are found to be self-similar and to depend only on the local value of the outer Stokes number and the rescaled wall-normal distance. These new results are powerful in view of engineering and environmental applications and corresponding flow modelling.

  • 19. Troiani, G.
    et al.
    Battista, F.
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Turbulent consumption speed via local dilatation rate measurements in a premixed bunsen jet2013In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 160, no 10, p. 2029-2037Article in journal (Refereed)
    Abstract [en]

    The mean local reaction rate related to the average expansion across the front and computed from the mean velocity divergence is evaluated in this work. Measurements are carried out in a air/methane premixed jet flame by combined PIV/LIF acquisitions. The procedure serves the purpose of obtaining values of a turbulent flame speed, namely the local turbulent consumption speed SLC, as a function of the position along the bunsen flame. With the further position that the flamelet assumption provides a proportionality between turbulent burning speed normalized with the laminar unstretched one and the turbulent to average flame surface ratio, the proportionality constant, i.e., the stretching factor becomes available. The results achieved so far show the existence of a wide region along which the bunsen flame front has a constant stretching factor which apparently depends only on the ratio between turbulent fluctuations and laminar flame speed and on the jet Reynolds number.

1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf