Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmed, Noman
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Efficient Modeling of Modular Multilevel Converters for HVDC Transmission Systems2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The drive towards getting more and more electrical energy from renewable sources, requires more efficient electric transmission systems. A stronger grid, with more controllability and higher capacity, that can handle power fluctuations due to a mismatch between generation and load is also needed. High-voltage dc (HVDC) provides efficient and economical power transmission over very long distances, and will be a key player in shaping-up the future electric grid. Due to its outstanding features, the modular multilevel converter (MMC) has already been widely accepted as a key converter topology in voltage-source converter (VSC)-based HVDC transmission systems.

    In order to study the feasibility of future MMC-based HVDC grids, adequate simulation models are necessary. The main objective of the thesis is to propose MMC reduced-order simulation models capable of accurately replicating the response of an MMC during all relevant operating conditions. Such models are the basic building blocks in developing efficient simulation models for HVDC grids. This thesis presents two MMC equivalent simulation models, the continuous model (CM) and the detailed equivalent model (DEM). Compared to the CM, the DEM is also capable of demonstrating the individual sumodule behavior of an MMC. These models are validated by comparing with the detailed MMC model as well as with experimental results obtained from an MMC prototype in the laboratory. The most significant feature of the models is the representation of the blocking capability of the MMC, presented for the first time in the literature for an MMC equivalent simulation model. This feature is very important in replicating the accurate transient behavior of an MMC during energization and fault conditions. This thesis also investigates the performance of the MMC with redundant submodules in the arms. Two different control strategies are used and compared for integrating redundant submodules.

    The proposed MMC models are used in developing point-to-point and multiterminal HVDC (MTDC) systems. A reduced-order model of a hybrid HVDC breaker is also developed and employed in the MTDC system, making the test system capable of accurately replicating the behavior of the MMCbased MTDC system employing hybrid HVDC breakers. The conclusion of the analysis of dc-side faults in a MTDC system is that fast-acting HVDC breakers are necessary to isolate only the faulted part in the MTDC system to ensure the power flow in rest of the system is not interrupted.

    A generic four-terminal HVDC grid test system using the CM model is also developed. The simulated system can serve as a standard HVDC grid test system. It is well-suited to electromagnetic transient (EMT) studies in a limited version of commercially available EMT-type software. The dynamic performance of the HVDC grid is studied under different fault conditions.

  • 2.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Haider, Arif
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Van Hertem, Dirk
    KTH, School of Electrical Engineering (EES), Electric Power Systems.
    Zhang, Lidong
    ABB Power Systems, Ludvika.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Prospects and challenges of future HVDC SuperGrids with modular multilevel converters2011In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) / [ed] EPE Association, 2011Conference paper (Refereed)
    Abstract [en]

    In order to transmit massive amounts of power generated by remotely located power plants, especially offshore wind farms, and to balance the intermittent nature of renewable energy sources, the need for a stronger high voltage transmission grid is anticipated. Due to limitations in AC power transmission the most likable choice for such a grid is a high voltage DC (HVDC) grid. However, the concept of the HVDC grid is still under active development as different technical challenges exist, and it is not yet possible to construct such a DC grid. This paper deals with prospects and technical challenges for the future HVDC SuperGrids. Different topologies for a SuperGrid and the possibility to use modular multilevel converters (M2Cs) are presented. A comprehensive overview of different sub-module implementations of M2C is given. An overview of short circuit behaviour of the M2C is also given, as well as a discussion on the choice between cables or overhead lines and DC-side resonance issues.

  • 3.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Haider, Arif
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    M2C-BASED MTDC SYSTEM FOR HANDLING OF POWERFLUCTUATIONS FROM OFFSHORE WIND FARMS2011In: Proceedings of IET RPG-2011 / [ed] IET, 2011Conference paper (Refereed)
    Abstract [en]

    In this paper a modular multilevel converter (M2C) basedmulti-terminal direct current (MTDC) system is proposed forthe connection of offshore wind farms. Each M2C ismodelled with 36 sub-modules per arm with a total of 216sub-modules consisting of half bridges. An open-loopconverter control method is employed for the M2Cs. Powersynchronizationcontrol is used instead of a phase-locked loop(PLL) for synchronization. A voltage controller isimplemented with power-synchronization control as an innerloop. By means of numerical simulations in PSCAD, it isshown that the system is self stabilizing both at steady stateand following power fluctuations of the wind farm.

  • 4.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Haider, Arif
    Van Hertem, Dirk
    ESAT/ELECTA, K.U.Leuven, Belgium.
    Zhang, Lidong
    ABB Power Systems HVDC, Ludvika.
    Harnefors, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    HVDC SuperGrids with modular multilevel converters - The power transmission backbone of the future2012In: International Multi-Conference on Systems, Signals and Devices, SSD 2012, IEEE , 2012, p. 6198119-Conference paper (Refereed)
    Abstract [en]

    In order to transmit massive amounts of power generated by remotely located power plants, especially offshore wind farms, and to balance the intermittent nature of renewable energy sources, the need for a stronger high voltage transmission grid is anticipated. Due to limitations in ac power transmission the most likable choice for such a grid is a high-voltage dc (HVDC) grid. However, the concept of the HVDC grid is still under active development as different technical challenges exist, and it is not yet possible to construct such a dc grid. This paper deals with prospects and technical challenges for future HVDC SuperGrids. Different topologies for a SuperGrid and the possibility to use modular multilevel converters (M2Cs) are presented. A comprehensive overview of different submodule implementations of M2C is given as well as a discussion on the choice between cables or overhead lines, the protection system for the dc grid and dc-side resonance issues.

  • 5.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Antonopoulos, Antonios
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion. ABB Corporate Research.
    Harnefors, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Performance of the modular multilevel converter with redundant submodules2015In: IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Institute of Electrical and Electronics Engineers (IEEE), 2015, p. 3922-3927, article id 7392712Conference paper (Refereed)
    Abstract [en]

    The modular multilevel converter (MMC) is the state-of-the-art voltage-source converter (VSC) topology used for various power-conversion applications. In the MMC, submodule failures can occur due to various reasons. Therefore, additional submodules called the redundant submodules are included in the arms of the MMC to fulfill the fault-safe operation requirement. The performance of the MMC with redundant submodules has not been widely covered in the published literature. This paper investigates the performance of the MMC with redundant submodules in the arms. Two different control strategies are used and compared for integrating redundant submodules. The response of the MMC to a submodule failure for the two strategies is also studied. Moreover, the operation of the MMC with redundant submodules is validated experimentally using the converter prototype in the laboratory.

  • 6.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Mahmood, Shahid
    Antonopoulos, Antonios
    Harnefors, Lennart
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Efficient Modeling of an MMC-Based Multiterminal DC System Employing Hybrid HVDC Breakers2015In: IEEE Transactions on Power Delivery, ISSN 0885-8977, E-ISSN 1937-4208, Vol. 30, no 4, p. 1792-1801Article in journal (Refereed)
    Abstract [en]

    The feasibility of future multiterminal dc (MTDC) systems depends largely on the capability to withstand dc-side faults. Simulation models of MTDC systems play a very important role in investigating these faults. For such studies, the test system needs to be accurate and computationally efficient. This paper proposes a detailed equivalent model of the modular multilevel converter (MMC), which is used to develop the MTDC test system. The proposed model is capable of representing the blocked-mode operation of the MMC, and can be used to study the balancing control of the capacitor voltages. In addition, the operation of the MMC when redundant submodules are included in the arms can also be studied. A simplified model of a hybrid high-voltage dc breaker is also developed. Hence, the developed test system is capable of accurately describing the behavior of the MMC-based MTDC system employing hybrid HVDC breakers, during fault conditions. Using time-domain simulations, permanent dc-side faults are studied in the MTDC system. In addition, a scheme to control the fault current through the MMC using thyristors on the ac side of the converter is proposed.

  • 7.
    Ahmed, Noman
    et al.
    KTH.
    Ängquist, Lennart
    KTH.
    Mehmood, Shahid
    Antonopoulos, Antonios
    Harnefors, Lennart
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Efficient Modeling of an MMC-Based Multiterminal DC System Employing Hybrid HVDC Breakers2016In: 2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), IEEE , 2016Conference paper (Refereed)
  • 8.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Continuous modeling of open-loop control based negative sequence current control of modular multilevel converters for HVDC transmission2013In: Eur. Conf. Power Electron. Appl., EPE, 2013Conference paper (Refereed)
    Abstract [en]

    Negative sequence currents are obtained during ac-side asymmetrical faults of converters in highvoltage direct current (HVDC) transmission systems. Consequently, second order harmonics in the dc-side voltage and current, unbalanced ac-side currents, and power oscillations can be observed. This paper presents a negative sequence current control (NSCC) scheme that eliminates second order harmonic ripples in the voltage and current of the dc-side during unbalanced grid conditions. Controllers for this purpose are investigated using a continuous model of the modular multilevel converter (M2C). The proposed scheme utilizes an open-loop controller for lower level control of the M2C. The continuous model used also has the capability to model blocking and deblocking events which may be used during protective actions. Simulation results reveal that the proposed NSCC scheme is effective in suppressing dc-side voltage and current ripples. Moreover, it keeps the ac-side phase currents balanced during asymmetrical fault conditions.

  • 9.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Efficient Modeling of Modular Multilevel Converters in HVDC-Grids Under Fault Conditions2014In: 2014 IEEE PES General Meeting | Conference & Exposition, IEEE Computer Society, 2014, p. 6939166-, article id 6939166Conference paper (Refereed)
    Abstract [en]

    High-voltage direct current (HVDC) grids using modular multilevel converters (M2Cs) have strongly been considered for the integration of distant renewable energy sources and also as a backbone to the existing ac-grids. The dynamic performance of the M2C is of particular interest in these grids. For electromagnetic transient (EMT) programs, modeling of HVDC-grids using detailed M2C models is unrealistic, as it requires extremely high computational effort and simulation time. In this paper an HVDC-grid test system is developed using a continuous simulation model of the M2C. The model is also capable of describing the blocking events of the M2C. Using time-domain simulations in PSCAD/EMTDC, the dynamic performance of the M2C in HVDC-grids under fault conditions is investigated. Simulation results reveal that the continuous M2C model can efficiently be used to study the dynamic performance of the M2C in HVDC-grids with high computational speed, under different fault conditions.

  • 10.
    Ahmed, Noman
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Validation of the continuous model of the modular multilevel converter with blocking/deblocking capability2012In: AC and DC Power Transmission (ACDC 2012), 10th IET International Conference on, 2012Conference paper (Refereed)
    Abstract [en]

    This paper presents the continuous model for the Modular Multilevel Converter (M2C). The model operates in two modes, either operating as a voltage source in deblocked mode or as a rectifying diode bridge in blocked mode. The model is validated by comparison with a detailed M2C model having 36 submodules per arm, using different control strategies. The comparison is based on time-domain simulations in PSCAD/EMTDC. The continuous model shows a very good agreement with the detailed model.

  • 11.
    Haider, Arif
    et al.
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Ahmed, Noman
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electrical Machines and Power Electronics (closed 20110930).
    Open-loop approach for control of multi-terminal DC systems based on modular multilevel converters2011In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) / [ed] EPE Association, 2011Conference paper (Refereed)
    Abstract [en]

    In this paper a multi-terminal direct current (MTDC) system with modular multilevel converters (M2Cs) is suggested. An open loop control method is used for the control of the converters. Each converter is modeled with 36 sub-modules per arm with a total of 216 sub-modules consisting of half bridges. Power-synchronization control is used instead of a phase-locked loop (PLL) for synchronization. Thus, the short circuit capacities of the ac systems are no longer limiting factors and the instability caused by the PLL in weak ac systems is avoided [10]. A direct voltage controller is implemented with power-synchronization control as an inner loop in one station. Several scenarios are analyzed to demonstrate control flexibility and ride-through capability for grid transients. By means of analytical calculations and time simulations in PSCAD/EMTDC, the validity of the proposed MTDC system is confirmed.

  • 12. Leterme, W.
    et al.
    Ahmed, Noman
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Beerten, J.
    Ängquist, Lennart
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    Van Hertem, D.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electrical Energy Conversion.
    A new HVDC grid test system for HVDC grid dynamics and protection studies in EMT-type software2015In: IET Seminar Digest, Institution of Engineering and Technology, 2015, no CP654Conference paper (Refereed)
    Abstract [en]

    This paper proposes a new HVDC grid test system for electro-magnetic transient analysis, suitable for HVDC power system studies ranging from protection to dynamic studies investigating converter behaviour and interactions. In the recent past research interest in HVDC grids has increased, leading to a multitude of studies concerning dc power flow and optimal power flow, dynamics and HVDC grid protection. However, each of these studies makes use of different grid topologies, configurations and transmission line parameters. In this paper, a standard HVDC grid test system is proposed and an implementation in EMT-type software is provided. The implementation in EMT-type software makes use of a frequency dependent cable model, continuous converter model and a reduced dc breaker model. By means of a protection study, the effectiveness and computational efficiency of the proposed HVDC grid test system is demonstrated. The model with its parameters will be made publicly available.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf