Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fugelstad, Johanna
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Bouzenzana, Jamel
    Djerbi, Soraya
    Guerriero, Gea
    KTH, School of Biotechnology (BIO), Glycoscience.
    Ezcurra, Inés
    KTH, School of Biotechnology (BIO), Glycoscience.
    Teeri, Tuula T.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Arvestad, Lars
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Identification of the cellulose synthase genes from the Oomycete Saprolegnia monoica and effect of cellulose synthesis inhibitors on gene expression and enzyme activity2009In: Fungal Genetics and Biology, ISSN 1087-1845, E-ISSN 1096-0937, Vol. 46, no 10, p. 759-767Article in journal (Refereed)
    Abstract [en]

    Cellulose biosynthesis is a vital but yet poorly understood biochemical process in Oomycetes. Here, we report the identification and characterization of the cellulose synthase genes (CesA) from Saprolegnia monoica. Southern blot experiments revealed the occurrence of three CesA homologues in this species and phylogenetic analyses confirmed that Oomycete CesAs form a clade of their own. All gene products contained the D,D,D,QXXRW signature of most processive glycosyltransferases, including cellulose synthases. However, their N-terminal ends exhibited Oomycete-specific domains, i.e. Pleckstrin Homology domains, or conserved domains of an unknown function together with additional putative transmembrane domains. Mycelial growth was inhibited in the presence of the cellulose biosynthesis inhibitors 2,6-dichlorobenzonitrile or Congo Red. This inhibition was accompanied by a higher expression of all CesA genes in the mycelium and increased in vitro glucan synthase activities. Altogether, our data strongly suggest a direct involvement of the identified CesA genes in cellulose biosynthesis.

  • 2.
    Guerriero, Gea
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Avino, Mariano
    Zhou, Qi
    KTH, School of Biotechnology (BIO), Glycoscience.
    Fugelstad, Johanna
    KTH, School of Biotechnology (BIO), Glycoscience.
    Clergeot, Pierre-Henri
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Chitin Synthases from Saprolegnia Are Involved in Tip Growth and Represent a Potential Target for Anti-Oomycete Drugs2010In: PLOS PATHOG, ISSN 1553-7366, Vol. 6, no 8, p. e1001070-Article in journal (Refereed)
    Abstract [en]

    Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.

  • 3.
    Guerriero, Gea
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Fugelstad, Johanna
    KTH, School of Biotechnology (BIO), Glycoscience.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    What Do We Really Know about Cellulose Biosynthesis in Higher Plants?2010In: JOURNAL OF INTEGRATIVE PLANT BIOLOGY, ISSN 1672-9072, Vol. 52, no 2, p. 161-175Article, review/survey (Refereed)
    Abstract [en]

    Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.

  • 4.
    Guerriero, Gea
    et al.
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Martin, Nathalie
    Golovko, Anna
    Sundstrom, Jens F.
    Rask, Lars
    Ezcurra, Inés
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    The RY/Sph element mediates transcriptional repression of maturation genes from late maturation to early seedling growth2009In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 184, no 3, p. 552-565Article in journal (Refereed)
    Abstract [en]

    P>In orthodox seeds, the transcriptional activator ABI3 regulates two major stages in embryo maturation: a mid-maturation (MAT) stage leading to accumulation of storage compounds, and a late maturation (LEA) stage leading to quiescence and desiccation tolerance. Our aim was to elucidate mechanisms for transcriptional shutdown of MAT genes during late maturation, to better understand phase transition between MAT and LEA stages. Using transgenic and transient approaches in Nicotiana, we examined activities of two ABI3-dependent reporter genes driven by multimeric RY and abscisic acid response elements (ABREs) from a Brassica napus napin gene, termed RY and ABRE, where the RY reporter requires ABI3 DNA binding. Expression of RY peaks during mid-maturation and drops during late maturation, mimicking the MAT gene program, and in Arabidopsis thaliana RY elements are over-represented in MAT, but not in LEA, genes. The ABI3 transactivation of RY is inhibited by staurosporine, by a PP2C phosphatase, and by a repressor of maturation genes, VAL1/HSI2. The RY element mediates repression of MAT genes, and we propose that transcriptional shutdown of the MAT program during late maturation involves inhibition of ABI3 DNA binding by dephosphorylation. Later, during seedling growth, VAL1/HSI2 family repressors silence MAT genes by binding RY elements. New Phytologist (2009)doi: 10.1111/j.1469-8137.2009.02977.x.

  • 5.
    Rajangam, Alex S.
    et al.
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Kumar, Manoj
    Aspeborg, Henrik
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Guerriero, Gea
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Arvestad, Lars
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
    Pansri, Podjamas
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Brown, Christian J. L.
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Blomqvist, Kristina
    KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Divne, Christina
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Ezcurra, Inés
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Mellerowicz, Ewa
    Sundberg, Bjorn
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Teeri, Tuula T.
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    MAP20, a Microtubule-Associated Protein in the Secondary Cell Walls of Hybrid Aspen, Is a Target of the Cellulose Synthesis Inhibitor 2,6-Dichlorobenzonitrile2008In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 148, no 3, p. 1283-1294Article in journal (Refereed)
    Abstract [en]

    We have identified a gene, denoted PttMAP20, which is strongly up-regulated during secondary cell wall synthesis and tightly coregulated with the secondary wall-associated CESA genes in hybrid aspen (Populus tremula x tremuloides). Immunolocalization studies with affinity-purified antibodies specific for PttMAP20 revealed that the protein is found in all cell types in developing xylem and that it is most abundant in cells forming secondary cell walls. This PttMAP20 protein sequence contains a highly conserved TPX2 domain first identified in a microtubule-associated protein (MAP) in Xenopus laevis. Overexpression of PttMAP20 in Arabidopsis (Arabidopsis thaliana) leads to helical twisting of epidermal cells, frequently associated with MAPs. In addition, a PttMAP20-yellow fluorescent protein fusion protein expressed in tobacco (Nicotiana tabacum) leaves localizes to microtubules in leaf epidermal pavement cells. Recombinant PttMAP20 expressed in Escherichia coli also binds specifically to in vitro-assembled, taxol-stabilized bovine microtubules. Finally, the herbicide 2,6-dichlorobenzonitrile, which inhibits cellulose synthesis in plants, was found to bind specifically to PttMAP20. Together with the known function of cortical microtubules in orienting cellulose microfibrils, these observations suggest that PttMAP20 has a role in cellulose biosynthesis.

  • 6. Siddiqui, K. S.
    et al.
    Poljak, A.
    De Francisci, D.
    Guerriero, Gea
    University of New South Wales, Sydney, Australia .
    Pilak, O.
    Burg, D.
    Raftery, M. J.
    Parkin, D. M.
    Trewhella, J.
    Cavicchioli, R.
    A chemically modified α-amylase with a molten-globule state has entropically driven enhanced thermal stability2010In: Protein Engineering Design & Selection, ISSN 1741-0126, E-ISSN 1741-0134, Vol. 23, no 10, p. 769-780Article in journal (Refereed)
    Abstract [en]

    The thermostability properties of TAA were investigated by chemically modifying carboxyl groups on the surface of the enzyme with AMEs. The TAAMOD exhibited a 200 improvement in starch-hydrolyzing productivity at 60°C. By studying the kinetic, thermodynamic and biophysical properties, we found that TAAMOD had formed a thermostable, MG state, in which the unfolding of the tertiary structure preceded that of the secondary structure by at least 20°C. The X-ray crystal structure of TAAMOD revealed no new permanent interactions (electrostatic or other) resulting from the modification. By deriving thermodynamic activation parameters of TAAMOD, we rationalised that thermostabilisation have been caused by a decrease in the entropy of the transition state, rather than being enthalpically driven. Far-UV CD shows that the origin of decreased entropy may have arisen from a higher helical content of TAAMOD. This study provides new insight into the intriguing properties of an MG state resulting from the chemical modification of TAA.

  • 7.
    Winzell, Anders
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Guerriero, Gea
    KTH, School of Biotechnology (BIO), Glycoscience.
    Aspeborg, Henrik
    KTH, School of Biotechnology (BIO), Glycoscience.
    Wang, Yiqiang
    KTH, School of Biotechnology (BIO), Glycoscience.
    Rajangam, Alex S.
    Teeri, Tuula T.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Ezcurra, Inés
    KTH, School of Biotechnology (BIO), Glycoscience.
    Biochemical characterization of family 43 glycosyltransferases in the Populus xylem: challenges and prospects2010In: Plant Biotechnology, ISSN 1342-4580, Vol. 27, no 3, p. 283-288Article in journal (Refereed)
    Abstract [en]

    Wood formation is a biological process of great economical importance. Genes active during the secondary cellwall formation of wood fibers from Populus tremulatremuloides were previously identified by expression profilingthrough microarray analyses. A number of these genes encode glycosyltransferases (GTs) with unknown substratespecificities. Here we report heterologous expression of one of these enzymes, PttGT43A, a putative IRREGULARXYLEM9 (IRX9) homologue. Expression trials in Pichia pastoris and insect cells revealed very low levels of accumulationof immunoreactive PttGT43A, whereas transient expression in Nicotiana benthamiana leaves by Agrobacterium infiltration(agroinfiltration) using a viral vector produced substantial amounts of protein that mostly precipitated in the crude pellet.Agroinfiltration induced weak endogenous xylosyltransferase activity in microsomal extracts, and transient PttGT43Aexpression further increased this activity, albeit only to low levels. PttGT43A may be inactive as an individual subunit,requiring complex formation with unknown partners to display enzymatic activity. Our results suggest that transient coexpressionin leaves of candidate subunit GTs may provide a viable approach for formation of an active xylanxylosyltransferase enzymatic complex.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf