Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Carlsson, Daniel O.
    et al.
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhou, Qi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nyholm, Leif
    Strømme, Maria
    Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties2012In: Journal of Materials Chemistry, ISSN 0959-9428, E-ISSN 1364-5501, Vol. 22, no 36, p. 19014-19024Article in journal (Refereed)
    Abstract [en]

    This work presents conductive aerogel composites of nanofibrillated cellulose (NFC) and polypyrrole (PPy) with tunable structural and electrochemical properties. The conductive composites are prepared by chemically polymerizing pyrrole onto TEMPO-oxidized cellulose nanofibers dispersed in water and the various nanostructures are obtained employing different drying methods. Supercritical CO2 drying is shown to generate high porosity aerogel composites with the largest surface area (246 m(2) g(-1)) reported so far for a conducting polymer-paper based material, whereas composites produced by ambient drying attain high density structures with mechanical properties significantly surpassing earlier reported values for cellulose-conducting polymer composites when normalized with respect to the content of reinforcing cellulose (Young's modulus = 0.51 GPa, tensile strength = 10.93 MPa and strain to failure = 2.5%). Electrochemical measurements clearly show that differences in the porosity give rise to dramatic changes in the voltammetric and chronoamperometric behavior of the composites. This indicates that mass transport rate limitations also should be considered, in addition to the presence of a distribution of PPy redox potentials, as an explanation for the shapes of the voltammetric peaks. A specific charge capacity of similar to 220 C g(-1) is obtained for all composites in voltammetric experiments performed at a scan rate of 1 mV s(-1) and this capacity is retained also at scan rates up to 50 mV s(-1) for the high porosity composites. The composites should be applicable as electrodes in structural batteries and as membranes in ion exchange applications requiring exchange membranes of high mechanical integrity or high porosity.

  • 2.
    Hamedi, Mahiar
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Marais, Andrew
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Herland, Anna
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 46, p. 12038-12042Article in journal (Refereed)
    Abstract [en]

    Step by step: A robust and rapid method for the layer-by-layer assembly of polymers and nanoparticles on strong and elastic aerogels has been developed. Thin films of biomolecules, conducting polymers, and carbon nanotubes were assembled, which resulted in aerogels with a number of functions, including a high charge-storage capacity.

  • 3.
    Nyström, Gustav
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fall, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Carlsson, Linn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Aligned Cellulose Nanocrystals and Directed Nanoscale Deposition of Colloidal Spheres2014In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 21, no 3, p. 1591-1599Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals are aligned in wrinkled polydimethylsiloxane templates and transferred to polyethyleneimine-coated silica surfaces in a printing process similar to microcontact printing. The highly aligned nanorods were deposited onto the surfaces with a line-to-line distance of 225-600 nm without loss of alignment. It was also possible to repeat the transfer process on the same surface at a 90-degree angle to create a network structure. This demonstrates the versatility of the technique and creates more options for advanced multilayering of materials. To demonstrate that the surface properties of the anionic cellulose nanorods were unaffected by the transfer process and to prove the concept of functionalizing transferred particles, cationic latex particles were electrostatically self-assembled onto the cellulose nanorods. The directed deposition of these particles resulted in excellent site specificity and the highest resolution to date for controlled deposition of colloids on an electrostatically patterned surface.

  • 4.
    Nyström, Gustav
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Marais, Andrew
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Karabulut, Erdem
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Cui, Yi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hamedi, Mahiar
    Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries2015In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, p. 7259-Article in journal (Refereed)
    Abstract [en]

    Traditional thin-film energy-storage devices consist of stacked layers of active films on two-dimensional substrates and do not exploit the third dimension. Fully three-dimensional thin-film devices would allow energy storage in bulk materials with arbitrary form factors and with mechanical properties unique to bulk materials such as compressibility. Here we show three-dimensional energy-storage devices based on layer-by-layer self-assembly of interdigitated thin films on the surface of an open-cell aerogel substrate. We demonstrate a reversibly compressible three-dimensional supercapacitor with carbon nanotube electrodes and a three-dimensional hybrid battery with a copper hexacyanoferrate ion intercalating cathode and a carbon nanotube anode. The three-dimensional supercapacitor shows stable operation over 400 cycles with a capacitance of 25â €‰Fâ €‰g â '1 and is fully functional even at compressions up to 75%. Our results demonstrate that layer-by-layer self-assembly inside aerogels is a rapid, precise and scalable route for building high-surface-area 3D thin-film devices.

  • 5. Uhlig, Martin
    et al.
    Fall, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wellert, Stefan
    Lehmann, Maren
    Prevost, Sylvain
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    von Klitzing, Regine
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals2016In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 32, no 2, p. 442-450Article in journal (Refereed)
    Abstract [en]

    The structural properties and aggregation behavior of carboxymethylated cellulose nanocrystals (CNC-COOH) were analyzed with small angle neutron scattering (SANS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) and compared to sulfuric acid hydrolyzed cellulose nanocrystals (CNC-SO3H). The CNC-COOH system, prepared from single carboxymethylated cellulose nanofibrils, was shown to laterally aggregate into 2D-stacks that were stable both in bulk solution and when adsorbed to surfaces. CNC-SO3H also showed a 2D aggregate structure with similar cross sectional dimensions (a width to height ratio of 8) as CNC-COOH, but a factor of 2 shorter length. SANS and DLS revealed a reversible ordering of the 2D aggregates under semidilute conditions, and a structure peak was observed for both systems. This indicates an early stage of liquid crystalline arrangement of the crystal aggregates, at concentrations below those assessed using birefringence or polarized optical microscopy.

  • 6.
    Wågberg, Lars
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fall, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nyström, Gustav
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lindström, Stefan
    Colloidal stability of nanofibrillated cellulose: Models, characterization, and assembly of fibrils2014In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 247, p. 124-CELL-Article in journal (Other academic)
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf