Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbas, Zainab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Al-Shishtawy, Ahmad
    RISE SICS, Stockholm, Sweden.
    Girdzijauskas, Sarunas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS. RISE SICS, Stockholm, Sweden..
    Vlassov, Vladimir
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    Short-term traffic prediction allows Intelligent Transport Systems to proactively respond to events before they happen. With the rapid increase in the amount, quality, and detail of traffic data, new techniques are required that can exploit the information in the data in order to provide better results while being able to scale and cope with increasing amounts of data and growing cities. We propose and compare three models for short-term road traffic density prediction based on Long Short-Term Memory (LSTM) neural networks. We have trained the models using real traffic data collected by Motorway Control System in Stockholm that monitors highways and collects flow and speed data per lane every minute from radar sensors. In order to deal with the challenge of scale and to improve prediction accuracy, we propose to partition the road network into road stretches and junctions, and to model each of the partitions with one or more LSTM neural networks. Our evaluation results show that partitioning of roads improves the prediction accuracy by reducing the root mean square error by the factor of 5. We show that we can reduce the complexity of LSTM network by limiting the number of input sensors, on average to 35% of the original number, without compromising the prediction accuracy.

  • 2.
    Abbas, Zainab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Kalavri, Vasiliki
    Systems Group, ETH, Zurich, Switzerland.
    Carbone, Paris
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Vlassov, Vladimir
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Streaming Graph Partitioning: An Experimental Study2018Ingår i: Proceedings of the VLDB Endowment, ISSN 2150-8097, E-ISSN 2150-8097, Vol. 11, nr 11, s. 1590-1603Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Graph partitioning is an essential yet challenging task for massive graph analysis in distributed computing. Common graph partitioning methods scan the complete graph to obtain structural characteristics offline, before partitioning. However, the emerging need for low-latency, continuous graph analysis led to the development of online partitioning methods. Online methods ingest edges or vertices as a stream, making partitioning decisions on the fly based on partial knowledge of the graph. Prior studies have compared offline graph partitioning techniques across different systems. Yet, little effort has been put into investigating the characteristics of online graph partitioning strategies.

    In this work, we describe and categorize online graph partitioning techniques based on their assumptions, objectives and costs. Furthermore, we employ an experimental comparison across different applications and datasets, using a unified distributed runtime based on Apache Flink. Our experimental results showcase that model-dependent online partitioning techniques such as low-cut algorithms offer better performance for communication-intensive applications such as bulk synchronous iterative algorithms, albeit higher partitioning costs. Otherwise, model-agnostic techniques trade off data locality for lower partitioning costs and balanced workloads which is beneficial when executing data-parallel single-pass graph algorithms.

  • 3.
    Abbas, Zainab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Sigurdsson, Thorsteinn Thorri
    KTH.
    Al-Shishtawy, Ahmad
    RISE Res Inst Sweden, Stockholm, Sweden..
    Vlassov, Vladimir
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Programvaruteknik och datorsystem, SCS.
    Evaluation of the Use of Streaming Graph Processing Algorithms for Road Congestion Detection2018Ingår i: 2018 IEEE INT CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, UBIQUITOUS COMPUTING & COMMUNICATIONS, BIG DATA & CLOUD COMPUTING, SOCIAL COMPUTING & NETWORKING, SUSTAINABLE COMPUTING & COMMUNICATIONS / [ed] Chen, JJ Yang, LT, IEEE COMPUTER SOC , 2018, s. 1017-1025Konferensbidrag (Refereegranskat)
    Abstract [en]

    Real-time road congestion detection allows improving traffic safety and route planning. In this work, we propose to use streaming graph processing algorithms for road congestion detection and evaluate their accuracy and performance. We represent road infrastructure sensors in the form of a directed weighted graph and adapt the Connected Components algorithm and some existing graph processing algorithms, originally used for community detection in social network graphs, for the task of road congestion detection. In our approach, we detect Connected Components or communities of sensors with similarly weighted edges that reflect different states in the traffic, e.g., free flow or congested state, in regions covered by detected sensor groups. We have adapted and implemented the Connected Components and community detection algorithms for detecting groups in the weighted sensor graphs in batch and streaming manner. We evaluate our approach by building and processing the road infrastructure sensor graph for Stockholm's highways using real-world data from the Motorway Control System operated by the Swedish traffic authority. Our results indicate that the Connected Components and DenGraph community detection algorithms can detect congestion with accuracy up to approximate to 94% for Connected Components and up to approximate to 88% for DenGraph. The Louvain Modularity algorithm for community detection fails to detect congestion regions for sparsely connected graphs, representing roads that we have considered in this study. The Hierarchical Clustering algorithm using speed and density readings is able to detect congestion without details, such as shockwaves.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf