Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Biswas, Anis
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Shirong, Wang
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Nagar, Sandeep
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Belova, Liubov
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Rao, K. Venkat
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    The effect of oxygen partial pressure during deposition in the magnetic properties of ZnO thin film2011In: Mater Res Soc Symp Proc, 2011, p. 117-122Conference paper (Refereed)
    Abstract [en]

    We have studied the magnetic properties of 100 nm thick ZnO thin films prepared by magnetron sputtering in different oxygen partial pressures (ratio of oxygen pressure to total pressure in deposition chamber, P Oxy). Only the films fabricated at P Oxy below ∼ 0.5 show room temperature ferromagnetism. The saturation magnetization at room temperature is initially found to increase as P Oxy increases and reaches maximum value of ∼ 5 emu/gm at P Oxy ∼ 0.3 and then starts to decrease and becomes diamagnetic for P Oxy > 0.5. From small angle XRD study of structural properties of the films, we find that the lattice stress developed in the film along c-axis also exhibits a similar behavior with the variation of P Oxy. Thus, both the room temperature ferromagnetism and lattice stress appear to originate from the intrinsic defects present in the sample.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf